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FOREWORD

This report was prepared by Hughes Aircraft Company on the

work performed under Contract NAS 2°2739 _Development of Charac_

terized and Reproducible Syntactic Foam of Phenolic Nylon. " The

work was administered under the direction of the Gas Dynamics

Division, Ames Research Center, National Aeronautics and Space

Administration, with Dr. JohnK'Parker as Project Engineer.

This report covers work done from 1 February 1965 to 31

December 1965.
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..... ABSTRACT

This report describes the characterization and improvement of

low density syntactic foam based on phenolic resin and 40 percent

powdered nylon. The work was carried out in two concurrent phases.

In the first phase, existing nylon phenolic foam designated for

use as an ablative heat shield in the Scout Re-Entry program was

studied to determine its properties and uniformity. Also, the

reproducibility of the materials and processes used in the manufacture

of the Scout Nosecap were investigated intensively. The Scout re-entry

material was found uniform and reproducible in its bulk physic_l

properties but heterogeneous and highly porous in its microstructure.

In the second phase, methods of upgrading raw materials and

processes to produce an improved, more uniform nylon phenolic

ablator were investigated. This work culminated in a revised formu .........

lation containing upgraded raw materials which was molded directly '

.._ into the Scout Nosecap configurations by a new process. The micro ...........

structure ..ofthe. improved material was considerably more uniform

than its forerunner. Porosity was reduced, compressive strength --

increased twofold and tensile strength increased fourfold.

This work has shown that uniformity of microstructure and the .........

reduction of interconnected porosity improve the physical properties

of low density ablators. The methods developed for improving the ....

raw materials and molding shapes of low density nylon phenolic

materials are suitable for scaling up to large sizes.
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I L__ _ '_ ........... 1.0 INTRODUCTION ...........

Low density ablative materials have been demonstrated to be

very effective ablators (Reference 1) and are of great interest for the

thermal protection of vehicles during reentry into both terrestrial and

extra-planetary atmospheres. The high performance of these

materials appears to be due to a combination of several factors among

which are (1) very low thermal conductivity, (2) the ready incorpora-

tion of pneumagenic materials which produce low molecular weight

gases, and (3) the ability to produce stable and permeable chars.

The low density ablators studied in this program are rig.id

molded materials of approximately thirty five pounds per cubic foot

density. All of the formulations contained forty percent by weight of

finely powdered nylon. The function of the nylon is to produce large

volumes of low molecular weight gases during ablation. Little or no

carbonaceous char is produced by the thermal degradation of the

nylon.

The balance of the ablative formulation consists of two chem-

ically similar components, a resinous matrix or binder, and a void

producer. The resinous matrices are thermosetting resins of the

phenolic novolac type. The function of the resin matrix is twofold,

first to bind all of the ingredients together to produce a strong and

useful structure, and second, to form a stable but porous char during

ablation. The third ingredient in these ablative formulations is

hollow microspheres (Ref. 2) of phenolic resin. The primary function

of this precured low density material is to produce voids in the final

product in an ordered and controlled manner. Materials incorporat-

ing these spheres are termed syntactic foams based on the dictionary

definition of syntactic .... "Connected system or order; orderly

arrangement. ,i Since the walls of the microspheres are of similar

chemical nature to the phenolic resin matrix they also contribute to

char formation during ablation.

L



' :_ _The

1.

2.

4

manufacture of the ablative material consists of:

dry blending the three finely powdered ingredients

compression molding under heat and pressure to reduce

the bulk and cure the resin matrix

postcuring the molded material at elevated temperature to

assure full cure and thermal stability.

The process for molding the ablative materials is complicated

:by several difficulties inherent in the raw materials and the mixture.

_.. Among these are the very high bulk of the uncured miXture, the

fragility of the microspheres, and the low thermal conductivity of both

the uncured mixture and cured product. These difficulties com.bined

• with lack of knowledge of the properties and variability of the raw

; imaterials cast serious doubt on the quality and reproducibility of the

_finished product.

..... This program was initiated to investigate the uniformity and

...... reproducibility of the nylon phenolic syntactic foam intended for use in
" i

...... :the Nosecap for the Scout re-entry vehicle. In the Scout program,

calculated ablation performancebased upon laboratory measurements

.... of material properties is compared with actual in-flight ablation per-

" formance. Therefore in order to have a controlled experiment it was

essential that variability of properties between and within Nosecaps be

.... kept to a minimum. In order to determine the variability of the

material (produced by the Langley Research Center) it was necessary

to:

• Characterize the properties of the raw materials and

the finished product, i

- • Establish the variability of significant properties of

the raw materials and finished product.

• Investigate the process and the degree of process control

used in making the finished ablator.

• Establish specifications containing realistic tolerances

for the raw materials and finished product.

r

2
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_.In addition to the effort of characterizing and establishing the ,

variability of the present Scout Nosecap material a parallel effort was, •

performed. This task consisted of producing an improved and more ,

closely controlled nylon syntactic foam based on the original formula-

tion. Using the understanding and data developed in characterizing of _ ....

the Scout material several avenues, of improvement were predicted and

applied. The improvements were based on the following approaches:

1. upgrading the raw materials ....

2. increasing the uniformity of the microstructure ......

3. modifying the formulation ....

4. developing a process which reduces the physical damage to

the phenolic microspheres during molding

The modification of the ablative materials and process

resulted in:

I.

3.

uniform and controllable properties in the raw materials, ....

and in the micro and macro structure of the cured material

reduction of microsphere damage ........

reduction of the ratio of interconnected to discrete voids ...............::: ...............

4. stronger material

All of the tasks were carried to conclusion in a period of ten

months. Much of the work was performed in an intensive manner for

integration with a tight NASA schedule. The characterization of the

Langley material revealed that it was uniform in bulk physical prop-

erties but heterogeneous and highly:porous in its micro structure.

Simple techniques were developed for improving the quality and

reproducibility of the raw materials. Analysis of the function and the

volume fraction relationships of the raw materials in the final product

revealed that the Langley formulation was not optimum. In

addition, the method of processing was deleterious and limited in

utility.

An upgrading effort culminated in a material of greatly improved

physical properties and more uniform microstructure. The new

process molded the Nosecaps to size (Fig. 1), thereby eliminating

machining and the necessity of molding oversize billets. The use of
..... 7
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Figure 1. Molding of ScoutRe-Entry Nosecaps showing p r e s s ,  
mold and dielectric preheater .  

dielectr ic  pre-heating and rapid curing presents  the possibility of 

scale-up of the process  to very  large shields. 

Par t icu lar ly  significant in this development i s  the demonstration 

that optimization and control of processing conditions can be accom- 

plished without major  modification of the chemical nature  of a formu- 

lation. 

of the constituents in the formulation and the use of these relationships 

to predict  optimum formulations promises  to be an extremely useful 

tool. The method of analysis should apply to the optimization of a l l  

low density ablative mater ia l s  and eventually to a l l  multiphase poly- 

m e r i c  mater ia l s .  

Also, the mathematical  analysis of the volume relationships 

4 
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..... !! 2,0 CHARACTERIZATION OF THE EXISTING NYLON
PHENOLIC SYNTACTIC FOAM

The material used in the Nosecap for the Scout Re-entry vehicle • "

is a low density composition based on powdered nylon and phenolic

resin. The low density of 35 pounds per cubic foot is obtained by

incorporating hollow microspheres of cured phenolic resin. The

microspheres are presumed to introduce gas filled voids in the mate-

rial in an ordered manner. For this reason the material is called a

syntactic foam.

The formulation of the Langley ablative material is as follows:

40% by weight powdered nylon- 80 mesh average

35% by weight of phenolic microspheres

25% by weight of powdered phenolic novolac resin-- 240mesh ".......

The ingredients in the formulation are all fine powders of a fluid

nature. They are mixed in the correct proportion on the basis of dry

weight and subjected to a gentle blending action in a Vee Blender. The

mixture is then charged into a cold mold of cylindrical shape. The

charge is subjected to pressure, a vacuum is applied to the mold

interior, and the pressure is then relaxed. The mold temperature is

then increased to approximately 325°F and the part cured for approxi- ....

mately 20 hours. The resulting billet is 13 inches in diameter and

approximately 4 1/2 inches high. After subjecting the billet to an •

extended postcure in inert atmosphere, the Scout Nosecap is machined

to the shape shown in Figure 2.

In order to characterize the molded billet material, to under- .....

stand the sources of variability, and to improve the product, the first

phase of the investigation was broken down into five areas of study.

1. Raw materials

2. Process

3. Billet material _

4. Interaction of materials and process

5. Analysis of results

- - 5 ..



|2.00 DIA (REF).

I 1.300 DIA.
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I | 0.100 MATERIAL ADDED

I / TO EXTERNAL SURFACE-
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9145 dA

............. Figure 2. Scout Nosecap and billet drawing.

• _._ .

,A primary concern of the contractor was the variability of both the bil-

let material and of the raw materials. Since the molded billet mate-

rialwas intended for use as an ablative standard itwas considered essen-

tial that assurance of future uniformity be estabiished. In order to

attain an accurate measure of these factors, statistical sampling tech-

i niques and analyses were used wherever possible.

For each of the raw materials and for the bi-llet material it was

therefore necessary to follow the following investigation procedure.

1. Determine the basic properties of the material

2. Select meaningful and sensitive tests and procedures

3. Establish a statistical sampling and testing plan

4. Perform measurements

5. Analyze the data

=
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In some cases it was necessary to de_velop special non-standard tests

to obtain information significant to this unusual product. All special

test procedures are fully detailed in Appendix I.

Z. 1 'GENERAL DESCRIPTION OF RAW MATERIALS

2. I. 1 Phenolic Novolac

A phenolic novolac resin is a condensation polymer formed by

the reaction of phenol and formaldehyde. The reaction is carried out

with an acid catalyst (generally oxalic acid} usually in aqueous solu-

tion. A molar excess of phenol to formaldehyde is required to produce•

a true novolac (Ref. 4}. The product is a thermoplastic resin consist-

ing primarily of a straight chain polymers of phenolic nuclei linked by

ortho and para positions. The polymer may be represented in a highly

idealized fashion as shown (Ref. 5).

The thermoplastic novolac poiyme-_-may be converted to an

infusible cross linked polymer by the addition of additional sources of

methylene leakages. In practice this is done by the addition of hexa-

methylene tetramine which is illustrated below.

I

_,/ii ,j,, ,

CHz! CH 2 !CHzI

i .

k ..



, _The hexa is intimately ground with the solid novolac resin. Upon

curing the resin in the temperature range of 150 to 180°C, the hexa

decomposes. This provides an additional source of methylene linkages

and liberates ammonia which serves as an alkaline catalyst. The

final reaction is similar to resole formation and results in a highly

cross linked infusible product. Products of the novolac type of phe-

nolic polymer are therefore termed two-step resins because of the two

distinct reaction steps required to bring them to a fully cured infusible

form.

Commercial novolac resins therefore consist of a mixture of

finely ground thermoplastic phenolic resin and hexamethylene tetra-

mine. The resin usually has a number average molecular weight of

650-800 in which the chemical constituents may range from unreacted

phenol to polymer chains having as many as twelve phenol nuclei.

The novolac resin used in the Langley formulation is a typical

commercial novolac developed primarily as a foundry resin for bond-

ing sand cores and molds used in metal casting. The properties of the

resin as published in the manufacturer's brochure are shown in

Table 1.

Property

Plate Flow

Powder Density

:Hexa Content

Sieve Analysis

(U.S. Std. Screens)

On 40 mesh

On 100 mesh

On 200 mesh

Thru 200 mesh

Te sting Method

wc-sz7-c

WC-2B-I

WC-II5-A'I
I

WC-7-D

Unit

mm

gms/cc

per cent

per cent

per cent

per cent

per cent

Required Value

20 -45

0.27 - 0.31

8.7- 9.5

0.0

0.6 max

2.0 max cumulative

98.0 min.

i

• • ) .....

Table 1. Manufacturer Ss specification for phenolic novolac.
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_The manufacturer reported that the resin is prepared in ve_'y

large batches of 5,000 - 10,000 pounds at extended intervals, A new

batch is made up only when the supply from the previous batch runs

low. It was not possible therefore to obtain samples of more than one

batch of the resin because only the single large batch was available at

the time of the investigation.

A discussion of probable sources of variability in phenolic novo-

lac resins and the other raw material is given in Appendix II.

2. 1.2 Phenolic Microspheres

This product is a lightweight reddish powder consisting of :

microscopic hollow spheres of cured phenolic resin. The spheres

have an average diameter of 0. 0017 inch and are filled with inert gas,

primarily nitrogen, during manufacture. It is presumed that the phe-

nolic resin used is of the resole type.

The specifications for the microspheres as given by the manu-

facturer are shown in Table 2.

Density (Liquid displacement)

Density (air displacement)

Flotation in Toluene Dupano!
Solution

Average Particle Size (dia)
Size Range (dia.)

0.25 gm/cc max.

0.30 gm/cc max.

(15.6 lbs/ft 3)

(18.7 lbs/ft 3)

Not less than 90% shall float

0. 0017 inch

0. 002 to 0. 0005 inch

Table 2. Manufacturer's specification for phenolic microspheres.

Z.l.3 Nylon

The powdered nylon used in the-Langley formulation is of Nylon

66 type, i.e., it is a linear polymer based on the reaction of hexa-

methylene diamine H2N(CH2) 6 NH2, and adipic acid, " ' ,

HOOC(CH2)4COOH. The nylon molding powder is ground at low tem-

perature in liquid nitrogen to average 80 mesh particle size. The

nylon also contains a small percentage of heat stabilizer to retard

..... I

..... .....



embrittlement at high temperatures, Nylon 66 polymers of molding

grade have an average molecular weight of the order of 12,000.

Typical properties of nylon 66 as listed in the manufacturer's

literature are shown in Table 3.

Specific Gravity

Melting Point (Fisher Johns)

Tensile Strength, Room Temp.

Coefficient of Linear Thermal

Expansion

The rmal C onductivity

Specific Heat

1.13- 1.15

250-Z60°C

11,800 psi

4.5 x 10 -5 in./in./OF

1.7 BTU/hr/ftZ/°F/in.

0.3 - 0.5 BTU/Ib

Table 3. Manufacturer's data on nylon 66. i

2.2 THE PRODUCTION PROCESS FOR LANGLEY BILLETS

The process for the fabrication of molded billets for Scout Reen-

try Nosecaps is completely detailed in a NASA Langley Procedure No.

104A (Ref. 6). This process document is lengthy and therefore is not

included in this report. The major features of the process are given

below.

The raw materials are sampled and moisture content is deter-

mined. The nylon and phenolic microspheres are then vacuum dried

for 3 hours at 200°F_ Abatch of m'olding material is then prepared

sufficient for a single billet molding and samples according to the fol-

lowing formulation:

250/e Phenolic Resin 1287 gm

40% Powdered Nylon .. 2060 gm

350/o Phenolic Microspheres 1803 gm

The weighed raw materials are loaded into a Vee Blender after

sifting through a twenty mesh screen and blended for a total of approx-

imately 25 minutes in a precisely specified order. The blended for-

mulation is then ready for molding.

i
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! _ ,:!The billet is molded in a sire le cylindrical mold mounted in 500
i

ton hydraulic press. The steel mold is steam heated, has provision

for vacuum lines to the cavity, and is instrumented with boththermo-

couple and pressure transducers. •

The molding operation starts by placing a layer of glass cloth in

the bottom of the cavity to act as a volatile sink. The molding mate,

rial is then placed in the cavity and leveled. Additional layers of vola-

tile sink material are placed on the top of the charge. The press is

then closed and pressure is exerted on the material to compress it to

7/8 of an inch less than its normal thickness. The pressure exerted is

estimated to be of the order of 2000 psi. The material is then allowed

to decompress or expand under the dead weight of the top press platen

(approximately 2000 Ibs total) to a thickness of 4 1/2 inches. The

press is ther_ opened and shims are placed on the top mold cavity to act

as lands so that the press cannot close past the 4 1/2 inch thickness of

the molded billet. The press is then closed at I00 tons load to the

lands so that most of the press load is borne by the mold rather than

the molding material.

The cure cycle is then begun by steam heating the mold to 335°F.

Vacuum is maintained in the mold cavity during this procedure. The

cure cycle is specified as three hours at 315°F for the center volume

of the molding. After curing, the ablator is cooled to 275 ° ± 10°F,
J

removed from the mold and placed in an insulated container for I0

hours. The total process time in molding a billet is approximately 24

hours. This complex curing procedure has been presented in a graph-

ical form in Figure 3.

The final step in the fabrication of molded billets is postcuring in

an inert atmosphere. The billets are placed in a container having a

continual flow of argon gas through it. The temperature is then raised

to 300°F at a uniform rate and thenmaintained at 300°F for six hours.

The billets are then cooled to 275°F in the argon atmosphere, removed

and placed in a container to cool to room temperature.

The finished ablator billets are then machined by conventional

means into finished Scout Nosecaps as shown in Figure 2.

11
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Figure 3. Molding process for Langley billet.

2.3 CHARACTERIZATION OF MOLDED BILLET MATERIAL

2.3. 1 Initial Test Development

r . .

_ ......Preliminary investigations were undertaken to establish test

methods used. Methods were selected to provide meaningful data in

terms of the use of the material i_nd which would serve as quality con-

trol tests. It was considered essential that the tests selected for qual-

ity control and variability studies be of sufficient precision to clearly

reveal differences in the material tested.

The preliminary tests were begun on a portion of a preproduction

billet sent from NASA Langley and on similar material received from

NASA Ames. Production billets were not received from NASA Langley

until much later in the program, a circumstance which forced eventu-

ally a reduction in the planned testing program due to time limitations.

The tests were divided up into these types:

a) Indications of general quality:

Visual and microscopic examination

X-Ray

Machinability

k..

°

r. --



..

?

i ......

. .

_~ .

c)

The

Table 4,

• • III.

In addition to the tests listed in Table 4 microscopic examina-

tions were made of various machined surfaces. It was found that all

methods of machining and polishing caused severe destruction of the

rr_crospheres at the surface. It was therefore decided that photomi-

crographs of these surfaces were meaningless since the surface had

been damaged. Later it was found that samples impregnated with

epoxide resin and cured (in connection with the Hughes porosity test)

could be adequately sectioned and polished. A photomicrograph of

such a surface is shown in Figure 4.

Tests suitable for statistical analysis:

Density

Compressive strength '

Volatiles and ash content

Extractable nitrogen (including ammonia}

Emission spectra of ash i

Porosity

Tests indicative of properties but not suitable for statistical

analysis:

The rmogr avimetric analysis

Infrared spectroscopy

results of these tests are presented in tabular form in

Details of the tests and test methods are given in Appendix

r

Porosity tests had been conducted with success by NASA Langley

using the mercury intrusion method (Aminco Porosimeter). Since this

• equipment was not available at Hughes it was decided to have Aminco

perform tests on a limited number of samples and to develop a simple

• and more economical test for use as a quality control method. It was

• also decided to use only very low pressures to impregnate the samples

to minimize destruction of phenolic microspheres. The test as finally

developed consisted of impregnating small ablator samples with a low

viscosity epoxide resin, at 50 psi, curing at low temperature, and

measuring the increase in weight of the sample. From the data

obtained it was possible to calculate the volume percent of continuous

. _
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Figure 4. Photomicrograph (lOOOX) of Langley billet micros t ruc ture  
a f te r  epoxide res in  impregnation. 

voids,  the volume percent of discrete  voids, and the combined o r  total 

void content. 

I. 

The Hughes porosity t e s t  is fully described in Appendix 

The resu l t s  of porosity measurements  on the preproduction bil- 

le t  f rom Langley a r e  shown in  Table 5. 

these resul ts  that the r e s in  impregnated a l l  continuous (interconnected) 

The assumption i s  made in 

1 5  
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-

Specimen
Numbe r

3-AI

3-A2

3-A3

3-A4

3-A5

3-A6

3-A7

3-A8

I -AI

I -A2

I -A3

I -A4

I-A5

I-A6 ..........

I-A7

I-A8

Original

Density
gm/cc

0.616

0. 604

0. 597

0. 589

0. 585

0. 578

0. 571

0. 575

0. 604

0. 571

0. 561

0. 557

Impregnated

Density
(Cured)

gin/Co

0.951

0.957

0.951

0.938

0. 923

0.910

0. 889

0. 889

0. 922

0. 934

0. 942

0. 936

0. 561 0. 950

0. 570 0. 948

0. 614 0. 942

0. 581 0. 953

Impregnated (Continuous)

Void Content as % of
Total Void Content

63. i

65. Z

64. 5

62.8

6O. 5

58.7

56.5

55.3

58.6

63.4

65.5

64.9

66.9

65.9

61.6

66.0

Mean

Standard Deviation

Table 5. Porosity of preproduction Langley billet.

voids and that no microspheres are crushed. The figures reveal that

the Langley material is highly porous.

Attempts to obtain infrared spectroscopic analyses on finely

powdered samples of the pre-production billets were unsuccessful. In

all cases the material was too opaque to obtain useful readings.

It was also decided to conduct Thermogravimetric Analyses both

at Hughes and at Aminco because of possible differences in the equip-

ment.

16
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2' 3_.2 The Sampling and Testing Plan for Langley Billets ......

On the basis of the preliminary test results a sampling plan was

set up for the Langley billets. The_production plan at Langley called ....

for a continuous run of thirty billets with no change in the process. In

the event that a deviation did occur from the standard procedure, that

billet was to be eliminated and removed from consideration. Previous

to the establishment of the sampling plan, the Langley process had

been studied and observed. It was agreed that all reasonable controls ....

were being maintained and that the process was reproducible within ........."

narrow limits. A random selection of six billets was therefore made

from the total of thirty billets to be produced.

' The billets to be tested at Hughes were Numbers 2, 8, 12, 19, -_. '

22, and 26. •..............

. A sampling plan was set up to determine within billet variation ....

" and check the significance of these variations in terms of position "

.. within the lZ inch diameter by 4 1/2 inch high cylindrical billets. By _

...... this method it should be possible to reveal significant variations in the ...........

• " axial (height), radial, and circumferential directions. The complete " __... ..............

- sampling and testing plan including that for raw materials and formu- "-

lation prior to molding is given in Appendix III.

2.3.3 Results of Langley BilletTests

Due to the fact that the six sample billets from Langley were not

all delivered until late in the program, the complete sampling plan was

not carried out. However the magnitude of variations between billets

and within billets was found to be small and, from the statistical

standpoint, it was not considered necessary to exhaustively test and

analyze the last three billets.

A summary of data collected is presented in Table 6. A full dis-

cussion of the analysis of variance and significance of these results is

given in Appendix IV.

.°
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Billet No. Z 8 16

Bulk Density - Ibs/ft 3

Appearance

X-Ray

35.26

Dark

Uniform

35.44

Light

Uniform

19 22 26

35.28 35.28 35.15 35.32

Mottled Dark Dark Mottled

2.3.3.1

Table 6. Data on intact billets.

Quality Control Tests

Moisture and Density Determinations

• ~

Billets Nos. 2 and 8 were machined to provide specimens repre-
%

sentative of variations in axial, circumferential and radial locations. .....

ii A total of 54 density-moisture content specimens were fabricated 3/4" -i

- in diameter and I/2" high. These specimens represented 6 height, 3

radial and 3 circumferential locations.

The individual specimens were weighed and measured both - '_ ........

.... " before and after oven exposure of one hour at 325°F. The dimensional _.i/_ ........

" " characteristics remained constant during drying.

The results of the tests for each of the sets of specimens are

• shown in Table 7. .i-

Billet No.

Z

8

Percent Volatile s

I

X

3.10

3.46

S

±0.013

±0.016

Density ibs/ft 3

X

33.68

33.44

S

±0.062

±0.484

N

54

54

Table 7. Density and volatiles content of billets Nos. 2 and 8

The-diacrepancy between the billet density and the individual

specimen mean density can be attributed to two factors:

a. The 3% by weight of volatiles which have been removed.

b. The syntactic foam expands after machining. The effect is

thought to be due to the relief to compressive strains

induced by the molding operation, r : .....

18



Analysis of Variance on Density Results

At this point it had become obvious that the magnitude of varia-

tion between and within billets was small and that density measure-
. o

ments appeared to be the most precise and useful test for analysis of

..... variance.

" :'_ i The results of the analysis of variance of density data for Billet

Nos. 2 and 8 are presented in Appendix IV..

: The conclusions of the density study are summarized as follows:
t

.... The billets are not homogeneous in density. On the contrary the

' density varies from point to point within a billet but not in random

.... fashion. Instead the density at a given point is a function of the coot-...

..... dinates of the point. The distribution of densities within a billet can be

represented approximately by a model consisting of a low density core

:i .... encased in a high density shell. The actual density gradient at each

...... point cannot be determined from these data because of the large incre-

ments of coordinates selected for study (three levels per factor).

However there is evidence, particularly in the case of the radius fac-

tor, that the density gradient near the outer surface is quite steep.

It must be emphasized that the above model is only an approxi-

mation to the actual situation. As a matter of fact densities vary from

point to point within the shell as well as within the core. However the

densities of corresponding points of the two billets are correlated.

The behavior of such a molding material under pressure might

. explain the results qualitatively. A study of the formulation used for

making this material reveals that there is insufficient resin to obtain

flow as in a conventional molding material. Such being the case it fol-

_i.i lows as a corollary that we do not have a system in which the molding !

pressure is constant throughout the mass being molded. This effect

plus the more rapid curing of the surface result in non-uniform crush-

ing and compaction.

19



,.i;_tAlthough the material does not conform to the accepted norm of a .....

good molding material, this does not necessarily preclude its being

acceptable as an ablative material. The question can be settled con-

clusively by experimentally determining the relationship between such

density heterogeneity and the ablative properties of a material. It can,

also be anticipated that such factors as compressive strength, poros- .

ity, and thermal conductivity will also vary throughout the billets in a

similar pattern. These properties may have a more pronounced effect

on ablative performance.

It must be emphasized again that although statistically significant_

and real (i. e. , not due to variations in test procedure, etc. ) the varia-

tions in density are of small magnitude, Furthermore the pattern of

variation was clearly defined. It was therefore decided to greatly

reduce the sampling and testing of the remaining billets.

Billet No. 12 sampled in a limited fashion to verify the variation

of specimens from the outer edge to inner core. Specimens were --

selected froma single circumferential location. These specimens _ ............

represented 6 height and 3 radial locations, The 18 moisture-density .i- : ":_:.... i .............

specimens were 3/4 inch diameter by 1/2 inch high. _.

The individual specimens were weighed and measured both .....

before and after oven exposure of one hour at 325°F. The dimensional

characteristics remained constant during drying. The mean value for

the percent of volatiles was 3.93. The mean value of the dry density _

was 33.84 lbs/cu ft. .....

The same discrepancy between the billet density and the individ- . " ........

ual specimen mean density which has previously appeared in each bil- : ......

let appeared in Billet No. 12.

Billets 19, 22, and 26 were subjected to the whole billet tests : ......
]

and spot checking. No large variation from the previous billets was .....

observed and the previous conclusion on variability were confirmed. , "

The decision to perform only limited tests of these billets was sup- . ....

ported by the lack of time remaining in the program to thoroughly test : ......

the billets and the request of NASA Ames to save most of the material ...........

for plasma arc testing.

20



:_' :: _Compressive Strength
]

• _ Compression specimens were machined from Billets Nos. 2 and

8 in identical fashion to the der_sity sampling. A total of 57 compres-

sion specimens, 0. 505 inch diameter x 1/2 inch high, were fabricated

from both billets. These specimens represented pairs of specimens

from 3 height, 3 radial and 3 circumferential locations plus 3 height

specimens at the central axis. Atotal of 18 compression specimens

were machined from Billet 12. These specimens represented pairs of

ispecimens from 3 height, 3 radial and I circumferential location. The

specimens were 0. 505 inch diameter by 1 inch high.

The summarized results of the compression testing are shown in
%

Table 8.

Billet

Numb er

2

8

12

Compressive Strength, psi

X

2435

2575

2820

S

±253

±318

±173

Number of
Tests

57

57

18

Table 8. Compressive strength of Langley billets.

J

Voids Content and Continuous Porosity by the Hughes Porosity

Test

As previously described, (Appendi x I) a method had been devel-

oped to impregnate ablator samples with epoxide resin and calculate

the amount and type of voids. The final method using epoxide resin

was selected after also evaluating silicone and polyester impregnants.

The epoxide impregnation method is considered to be particularly suit-

able because the low impregnation pressure of 50 psi and the low cur-

ing temperature of I20°F is not likely to cause degradation or major

physical changes in the ablator specimens.

The results of porosity test on Billets Nos. 2 and 8 are shown in

Table 9.
.
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Specimen
Number

A4R1DI-IB

AZK2D3-2B

A6RID2-3B

A5R2D2-4B

A3-D2-R3

A4-D2-R3

A3-D2-R2

A4-DZ-R2

A3-D2-RI

A4-D2-R1

A2-D2-R3

A5-D2-K3

AZ-DZ-R2

A5-D2-R2

A2-D2-RI

A5-D2-RI

AI-D2-R3

A6-D2-R3

AI-D2-R2

A6-D2-R2

AI-DZ-RI

A6-D2-RI

Table 9.

Original
Density

Continuous

Voids as
Percent of

Total Void
Volume

Continuous

Voids as
Percent of

Total Volume

of Sample

Discrete

Voids as
Percent of

Total Volume

{Calculated)

of Sample

Billet No. 2

0. 541

0. 552

0. 572

0. 551

68.9

67.7

65.7

68.2

X= 67.6

S =+1.4

38. 1

34.8

34.6

37.1

X= 36.2

S =±1.7

Billet No. 8

17.2

17.6

18.1

17.3

X= 17.6

S =±0.4

0. 566

0. 556

0. 554

0. 554

0. 553

0. 550

0. 566

0. 567

0. 554

0. 554

0. 555

0. 562

0. 566

0.57O

0. 565

0. 573

0. 568

0. 571

68.1

68.9

69. O

70.5

71,4

71.2

67.7

66. 1

68.6

70.3

69.6

71.0

68. l

65.5
!

68. O

67.8

66.6

67.0

X= 68.6

S =+1.8

36.2

37.3

37.5

38.2

38.8

38.8

36. 1

35.1

37.2

38. 1

37.6

38.0

36.2

34.6

36.2

35.7

35.3

35.2

X= 36.8

S =±1.3

17.0

16.8

16.8

16.0

15.5

15.7

17.2

18.0

17.0

16.1

16.4

15.5

17.0

18.3

17.0

16.9

17.7

17.3

X= 16.8

S =±0.8

Porosity of Langley billets by epoxide impregnation at 50 psi.,_
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' IThe continuous porosityit should be noted was uniformly •high

and all porosity values between Billets 2 and 8 are similar.

Voids Content by Aminco Porosimeter

In order to determine the porosity of Billet No. 2, four speci-

mens were submitted to Aminco for testing with the Winslow Porosim-

eter. These specimens were taken from the same areas in Billet No.

2 as the epoxy impregnated specimens reported in Table 9. Part of

ithe data obtained were expressed in terms of volume percent of mer-

cury penetrating the material and are presented in Table 10. Although

the differences between specimens are small, an analysis of variance

shows them to be significant.

As a sample of the type of data obtained, the curve for Specimen

#1A-2A4R1D2 is shown in Figure 5. In addition, the pressures corre-

sponding to the ultimate compressive strength of the material and to

the first, second, and third quartiles of the crushing strength of the

phenolic Microsphere filler are marked. The ultimate compressive

strength pressure approximately coincides with the 90th percentile

pressure of the Microsphere crushing strength.

..

Pres-
sure
PSI

15

30

45

6O

3OO

Epoxy
Impreg.
at 50

IA-2A4RID2

1.6

24.6

29.0

30.6

34.7

Specimens

2A-2A2R2D2

1.8

24.9

28.7

30.5

34. 1

38. 1 36.8

3A-2A6RIDI

i. 7

22.5

27.2

29.2

33.2

34.6

4A-2A5R2D3

1.6

24.4

28.4

30.0

33.7

37. 1

Table 10. Porosity by Aminco porosimeter.

Extrap-
olated

Value

(35.2)

Mean
Value

(36.6)
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Figure 5. Porosity of Langley ablator billets by Aminco-Winslow

porosimeter.

The two steps (zero slopes) are quite pronounced and could be

interpreted as follows. At the low pressures the mercury is simply

filling the continuous (or interconnected) voids until all are practically

filled. Thereafter there is no change in volume with increases in

pressure until the pressure is enough to collapse the walls enclosing

the discrete voids which are thus added to the continuous voids. The

second asymptote or step is obtained when a11 of this additional volume

has been filled.

Figure 6 is a plot of the data of the same specimens (from Table

9) and is presented to show the portion of the curve in which essen-

tially no crushing of Microspheres can take place. Use of a linear

pressure scale in place of a log scale makes the zero slope portion

more evident. Apparently the curve is that of a linearly transformed

rectangular hyperbola with an asymptote corresponding approximately

to an initial continuous void volume and an intercept corresponding to a

pressure just sufficient to start penetration.
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Figure 6. Penetration vs. pressure curve.

If the relationship

P V
p _ o

V -V

(where P = pressure, V = volume, Po = intercept, V_ = asymptote)

holds, then a plot of P_ vs P should yield a straight line.

Figure 6 shows that this is a satisfactory approximation. Least

squares estimates of the constants based on the data for all four speci-

ments of Billet No. Z gave

Po = 10.4p_; and Va0 = 35. Z%

The asymptote value, 35. Z% is close to the continuous void vol-

ume calculated from epoxy resin impregnation data, 36.6%. The sec-

ond asymptote value, 50. 1%, might be expected to correspond to the

initial total void volume (assuming complete fracture and filling of
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microspheres). However this does not agree with the total void vol-

ume, 54.2%, calculated from the measured density.

2.3. 3.2 Other Properties of Langley Ablator Billets

Photomic r o sc opy

As previously discussed no technique was found to section and

observe an untreated billet specimen without causing major damage to

the surface. However, it was found that specimens could be machined

and polished from epoxy impregnated billet specimens using standard

metallurgical techniques. A typical photomicrograph of a polished

impregnated billet surface is shown in Figure 4. The large irregu-

larly shaped areas of light hue are presumed to be nylon particles.

Rounded area with a sharply defined wall are microspheres. In all

observation made the great majority of microspheres were damaged

and filled with the impregnating resin. Also large void areas filled

with impregnating resin were observed as shown by scratch marks

from the polishing operation (runs diagonally from top right in Figure

4). The high degree of interconnected porosity revealed by the poros-

ity tests were therefore confirmed by direct observation, and the

assumption that microspheres were damaged by the molding process

was supported.

Examination of fractured surfaces of the Langley ablator with the

naked eye and by microscopy did however reveal a heterogeneous

structure containing many large nylon particles. A typical example is

shown in Figure 7.

Gas Transmission Tests

A simple gas transmission test was developed by passing air at

one atmosphere pressure through machined billet specimens and

measuring the gas flow with a gas burrette. The standard specimen

for this test had been a 3-inch diameter disc with a . 250 inch thick-

ness. It was immediately discovered that air passed far too rapidly

through this thickness to obtain a reproducible and meaningful result.
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Figure 7. Photomicrograph (400X) of f rac tured  surface of 
Langley billet showing la rge  nylon particle.  

La ter  in the program a . 750 inch diameter  by 1. 132 cylindrical speci-  

men  was utilized with air passing through in the axial  direction. Even 

with this specimen, a i r  passed so readily through the Langley mater ia l  

that  flow was l imited by the orifice size of the stopcock on the gas bur -  

re t te .  Readings of 9 0  ml of a i r  passed in 43 to 44 seconds were 

obtained on al l  Langley specimens f r o m  al l  portions of the billet. 

These resul ts  conf i rm the high porosity of this mater ia l  although they 

r ep resen t  a figure lower than the gas t ransmission capability the 

ma te r i a l .  
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_Ther mogravimetric Analysis

The presence of large nylon particles and the heterogeneity of

the microstructure of the billet material presented difficulties in

obtaining a reproducible small sample for TGA. it was therefore

decided not to run TGA on the billet material and to concentrate TGA

work on the raw materials.

Ash Content

The ash content from ignition of the billet material in air at

1000°F was determined to be similar to that of preproduction billets,

that is approximately i. 5 - i. 3%. Little variation was found in'the

results and it was decided to discontinue this test as a quality control .....

procedure. ....

Tensile Strength

Late in the program it was decided to compare the tensile

strength of the Langley billet material with that of Hughes made nose

cap material. Three tensile dog bone specimens were machined from

the center of Billet #Z6 to the following dimensions: A Z" x 6" x 3/4"

bar was necked down with a 3" radius cutter equally from both sides to

form a 3/4 inch square cross section at the center of the tensile bar.

The results of these three tests were 288 psi, 330 psi, and 439

psi (avg 37Z psi).

Z. 3.4 Summary of Langley Billet Characterization

The Langley ablators may be characterized as varying only to a

small degree in bulk physical properties between billets and within bil-

lets. On the microscopic scale however they appear to be heterogene-

ous. The material is highly porous, and contains reiatively large par-

ticles, crushed miarospheres, and voids resulting in an uneven

microstructure. The material is not a syntactic foam in the sense that

the term syntactic means an ordered arrangement of voids. The low

compressive and tensile strength combined with the high porosity of
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the material may be deleterious in high heat flux and high shear

environments.

The variation within billets may best be summarized in terms of

density; the most easily performed and precise quality control test

used. The density tends to be high in the exterior layers of the part.

Thus the density variation may be approximated as shown in Figure 8.

2.4 RAW MAkTERIALS CHARACTERIZATION

2.4. 1 Phenolic Novolac

The characterization of any commercial phenolic novolac resin

is complicated by the fact that the product is a mixture of the novolac

resin and hexamethylene tetramine. The two materials are ground

together into an extremely fine powder and it is extremely difficult to

separate the two. Both the hexamethylene tetramine and the low

molecular weight fraction of the novolac are water soluble. Any sepa-

ration method involving increases in temperature tends to advance the

resin (increase the molecular weight. } Attempts to separate the hexa

from the base resin almost inevitably cause changes in the base poly-

mer. One of the major efforts in characterizing the novolac was

-; ......................
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VOLI_ I N1ERCONNEC1(D
POROSITY
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Figure 8. Schematic distribution of properties in Langley billet.
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therefore to develop a method of removing the hexa with minimum

change to the phenolic novolac.

Separation of Hexa

The method found most effective for removal of hexa from the

commercial resin was washing several times in cool water accom-

panied by intensive mixing. It was found that five washings at a con-

centration of 4 pounds of resin to 10 gallons of pure water in a 20 gal-

lon Hobart mixer effectively reduced the hexa content. The method of

hexa removal is described in Appendix I. The removal of hexa was

verified by a very low analysis for nitrogen on the washed product and

an essentially infinite gel time. It was recognized that this treatment

also removed water soluble phenols and dimers. A total of 14.7% loss

of weight was obtained, consisting of approximately 9% hexa and

approximately 6% low molecular weight phenols. The nitrogen content

of the extracted material was 0.05% representing an efficient removal

of hexa.

Apparent or bulk density measurements were attempted with

powdered resin by weighing a container of resin having a fixed volume.

Results are tabulated in Table 11.

The measurements indicate that a reproducible bulk density

measurement may be difficult to achieve and that the density is

affected by brief exposure to moisture.

Gel Point

Gel tests were run at 302°F on a temperature controlled cure

plate on phenolic novolac. Tests were run on samples of Batch No.

C633A as received and after five water extractions. In addition, gel

tests were run on six samples taken from various locations in a drum

of Batch No. C1020A. Four gel tests were run on each sample. Wide

variations within samples were obtained. Since it was felt that the

large range in values could be due to moisture, one sample was" dried

18 hours at I20°F and the gel point redetermined. The drying
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Volume of Measure 111 cc
Container Tare Weight 17.6 gm

Treatment Net Wt-Gm Density Gm/cc

Vibration Compacted

Vibration Compacted

Vibration Compacted

52.6

47.9

46. 5

.474

•432

•419

Ave rage

No Compaction

No Compaction

No Compaction

No Compaction

No Compaction

40.6

39. z

37.9

40. l

39.7

.442

.366

• 353

.341

• 361

.358

Average . 356

No Compaction -
High Humidity

40.7

41.3

39.5

.367

•372

•356

Average . 365

Table II. Bulk density of commercial phenolic novolac.

procedure resulted in a much smaller range in test results. The

results are given in Table 12.

Gel tests at 300 ± 2°F were repeated on six samples taken from

various locations in a drum of phenolic novolac, Batch No. C1020A_

after drying the samples for 18 hours at 120°F under vacuum• The

results obtained for samples XRCC and XRCO were very inconsistent.

Gel determinations were then run on all six samples immediately after

tumbling each sample vial. These last gel times were relatively con-

sistent. It appears that some segregation of phenolic may take place

on long standing. The results are summarized in Table 13.
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Sample Description .

Batch C633A, as received

Batch C633A, water
extracted

Cure Time, Seconds

Test Number

1 4

178.6

458.2

2 3

180.0 153.1

468.2 2 59.8

106.8

295.5

Batch C I020A, Sample XRBO

Batch CI020A, Sample XRBC

Batch CI020A, Sample XRCO

Batch CI020A, Sample XRCC

Batch CI020A, Sample XRTO

Batch CI020A, Sample XRTC

Batch C1020A, Sample XRBC
Dried 18 hrs at 120°F

1.10.3

106.3

107.3

100.0

89.3

99.3

103.8

I10.

130.

113.

117.

91.

103.

104.

6 ii0.

7 i03.

8 115.

2 105.

0 92.

6 96.

9 99.

1 118.0

5 147.4

2 94.4

2 118.0

5 103.1

6 97.5

8 98.2

(XRBO = bottom-o_tside,
XRCO = center-outside, XRCC

outside, XRTC = top-center)

XRBC = bottom-center,

= center-center, XRTO = topi

Table 12. Gel point tests on commercial phenolic novolac.

These results emphasize the need for thorough mixing of the

material before sampling for test. Evidently a large surface effect

exists tending to increase the gel time. This effect is thought to be the

loss of volatile phenols which exert a solvating effect during gel tests

thereby increasing the speed of reaction.

Viscosity Number

The viscosity number of the uncured resin was determined

according to Hughes Material Specification No. 16-1096. The method

consists of measuring the viscosity and refractive index of a filtered

solution of the resin in dimethyl formamide. The viscosity number is

the diagonal band on a chart within which the intersection of the
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Sample
Designation

XRCC

XRCO

XRCC

XRC O

XRBC

XRBO

XRTC

XRTO

Sample
T re atment

Vacuum-dried,
not tumbled.
Taken from
surface of

material

Vacuum-dried,
tumbled

Gel Time, Seconds

Run Number

1 2 3 4

273.8 318.5 339. 1 292.6

253. 1 137.6 143. 1 197.2

122. 3

122. 3

125.2

123.2

124. 3

125.7

123.7

123.0

124. 3

120.0

123.3

123.9

127.7 126.4 128.5 126.5

128.0 135.2 135. 1 130.7

124. 3 127.8 123.7 123.7

Table 13. Gel point tests on vacuum-dried phenolic novolac.

refractive index and the viscosity lies. The results of three determi-

nations were virtually identical. A viscosity number of 2. 3 was

obtained.

Extractable s

The uncured phenolic resin was almost completely soluble in

acetone and dimethylformamide. An attempt was made to water-

extract 500 gm of resin. A total of five extractions with cold, dis-

tilled water left a residue of 426.5 gm (14.7 percent loss).

Volatile s

Volatiles determinations were made on six samples taken from

various locations in a drum of Batch No. C1020A. Determinations

were made on two one-gram samples taken from each sample. The

volatiles were determined on the same material for two drying
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conditions: 24 hours under vacuum at I20°F and 45 minutes at 300°F.

The results in Table 14 show a pronounced effect due to location in the

original drum and a large variation within samples in some cases.

Ash Content

The ash content of the dried samples remaining after the vola-

tiles determinations described in the preceding section was determined

by ignition to constant weight at 1300°F. The ash content values in

Table 15 are based on the dried weight, not the original weight prior to

the analysis for volatiles. The ash content is extremely low with no

significant within drum variation.

Total Nitrogen

The total nitrogen was determined by the Dumas method on two

'samples taken from the top-center (XRTC) and the bottom-center

(XRBC) of a drum of phenolic novolac, Batch No. C1020A. Two

Sample
Designation

XRBO

XRBC

XRCO

XRCC

XRTO

XRTC

Location of ]Run

Sample in Drum !No.

Bottom, outside 1
2

Bottom, center 1

2

Center, outside 1
2

Center, center 1

2

Top, outside 1

2

Top, center 1
2

Volatiles, Weight-Percent

24 Hours 45 Minutes
120°F (Vacuum) at 300°F Total

1. 12 0.46 1.58
1.02 0.71 1.73

1.38 0.67 2.05

1.24 0.63 1.87

2.90 0.47 3.37
3.98 0.47 4.45

1.30 0.61 1.91
2.27 0. 52 2.79

4.45 0.47 4.92
4.46 0. 56 5.02

3.84 0.43 4.27
4.54 0.46 5.00

Table 14. Volatiles in phenolic novolac, batch CI020A.
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Sample

De signation

)
XRBO

XRBC

XRCO

XRCC

XRTO

XRTC

Location of

Sample in Drum

Bottom, outside

Bottom, center

Center, outside

Center, center

Top, outside

Run

No.

1
2

1
2

1
2

1
2

Ash Content,
Percent

0.03

0.02

0.02

0.02

0.0Z

0.03

0.02

0.02

0.02
O. 02

Top, center 1

2
0.02
0.02

Table 15. Ash content of phenolic novolac, batch CI020A.

determinations were made on each sample, The results, given in

Table 16 show no effect of sample location on total nitrogen content.

Moldability

Two one-inch diameter discs were molded from the unmodified

resin, Batch No. C633A. The discs were cured for one hour at 300°F

at a pressure of 200 psi. The material molded fairly well. However,

a few small bubbles could be seen in both discs. Two small, bubble-

free sections cut from disc were weighed in air and water. The spe-

cific gravity calculated from the results was 1.27.

Ash Content and Emission Spectra of Ash

The ash remaining after the ignition of Batch No. C633A was

subjected to emission spectrographic analysis. Table 17 gives the

semiquantitative results based on the ash weight and on the original

weight of resin (ash content = 0.040%).

35



Sample

De signation

)
XRBC

XRTC

Run

No.

1

2

1

2

Total Nitrogen,
Percent

3.46

3. 50

3.49
3. 52

Table 16. Total nitrogen content of phenolic novolac, batch C10Z0A.

Element

Silic on

Iron

Calcium

Aluminum

Zinc

Copper

lViagne sium

Boron

Manganese

Lead

Tin

Chromium

Nic ke 1

Silver

Titanium

Zirconium

Percent (based)
on Ash)

Percent (based on

Unignited Weight)

ii.

7.3

II.

2.4

3.8

2.4

i.I

0.52

0. II

0.30

0.65

0.66

1.2

Trace

0.30

Trace

0.0044

0.0029

0.0044

O. OO096

0.0015

O. OO096

0.00044

0.00021

0.000044

0.00012

0.00026

0.00026

0.00048

0.00012

Table 17. Spectrographic analysis of ash of phenolic novolac.

\ Flow Characteristics of Catalyzed Resin

In order to obtain a simple quality control procedure for the

resin and to gain a better understanding of its molding characteristics,

it was decided to determine flow by conventional methods.
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It was found to be impossible to mold dense flow cups by ASTM

method No. D 731-55T "Molding Index of Thermosetting Molding Pow-

ders. " All the cups molded contained large bubbles and the flow times
were er rati_c.

Flow was therefore checked with the Mesa Spiral Flow Mold; a

method now being generally adopted by industry. In this method the

molding material is transferred at the center of a heated spiral mold.

The Archimedean spiral cavity has a pitch of I/2 inch and the channel

is 0.250 wide, 0.082 inch deep, and 48 inches long. Flow is measured

in inches of the spiral filled by the material under controlled condi-

tions of pressure, temperature, and charge weight (see Figure .9).

The procedure is described in Appendix III.

Reproducible flow measurements were obtained with the spiral

flow mold which should be suitable for specification requirements.

Preliminary results are tabulated in Table 18.

Load on
Mold

2" Dia Ram
Lbs Temp. oF

I0,000

I0,000

2,500

2,500

2,500

2,500

2,500

2,500

2,500

Z, 500

2, 500

3O0

3O0

300

3OO

300

325

325

35O

350

Z50

25O

r

Charge Wt

gm i

Length of
Flow- Inches

(Solid Molding)

2.3

48+

2.7

3.2

2.5

1.9

2.1

1.0

i.i

-0-

-0-

25

35

35

35

35

35

35

35

35

35

35

Length of
Flow- Inches

Total

+48

+48

2.85

3.45

2.85

2.5

2.2

2.1

2.4

-0-

-0-

Table 18. Spiral flow of commercial phenolic novolac (as received).
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Figure 9. Mesa sp i r a l  flow mold. 
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Variability of Hot Plate Cures of Novolac Specimens from a

Drum

An experiment was performed to determine whether specimens

taken from different locations in a drum of phenolic novolac would be

variable in hot plate cure. Specimens were taken from six different

locations in the drum, viz. ,

Axis - top

Axis . center

Axis - bottom

Wall surface - top

Wall surface - center

Wall surface - bottom

After tumbling each specimen four hot plate cure tests at 30Z°F

were performed on it. Results are shown in Figure 10.

TOP CENTER BOTTOM
140

120

"/ll/I//l

r///////A I//////_ _///////_ V//////.,_
7///////

Z
o
U
W

F-
.J

I00

80

6O

4O

_0

I

AXIS WALL

Figure IO.

AXIS WALL AXIS

Cure speed of novolac taken from various

positions in the drum.

WALL
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J_ : :rA Bartlett'_ te_t showed that there was no significant difference

between error variances and hence pooling could be done.

An analysis of variance revealed that there was no significant

radial effect (from axis to wall). However the axial effect (top to bot-

tom) and interaction were highly significant at levels of P < .001.

Ninety-five percent confidence intervals of means were calcu-

lated and are shown plotted in the figure. This illustrates the signifi-

cant effects. The axial effect is due to the slightly higher cure speed

of specimens taken from the center of the drum.

The interaction is attributable to the slow cure of the specimen

taken from the axis-top location.

It is possible that these differences reflect differences in hexa

content. The material is a blend of novolac and hexa and the possibil-

ity of some segregation in transit exists. However, the differences

are probably not of sufficient magnitude to cause difficulties in

production, i

Melting Point of Extracted Phenolic Novolac

The melting point of vacuum-dried, freshly tumbled, water-

extracted phenolic novolac (gel time = 150 minutes) was determined

and compared with that of two Hughes-synthesized novolacs, HFN-Z

and LFN-3 (described later). The melting points obtained are shown

in Table 19.

Fractionation of Phenolic Nov01ac

Water-extracted phenolic nov01ac (gelation time, 150 minutes)

was fractionated by precipitation with water from an acetone solution.

I .............

Resin Melting Point, °C Av.

Phenolic Novolac, Water Extracted

HFN-Z

LFN- 3

114

89

79

Table 19. Melting point of novolacs.
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'Ofie hundred (100) gm of resin was dissolved in 900 gm of acetone, _ .....

Water (approximately 250 ml) was added slowly until the solution was

Saintly turbid, then a small quantity of acetone was added to remove

the turbidity. Two large fractions (49.98 arid 45.59%) were obtained

by successive additions of two 100 ml quantities of water. The frac-

tions were separated by the use of a centrifuge. Each fraction was

vacuum-dried to a hard cake, ground to a fine powder and vacuum-

'dried for 18 to 36 hours. The small fraction remaining was not

recovered. The fractions were submitted for determination of

molecular weight.

I
i •

The rmogravimetric Analysis

TGA curves were run on the commercial novolac and on a

Hughes synthesized novolac (designated LFN-1H) at both Hughes and on

standard equipment at Aminco.

Since TGA data of both Aminco and Hughes on the commercial

phenolic novolac and on the Hughes low factor novolac were available

it was decided to •compare laboratories.

An analysis of variance showed that laboratories were highly

significant as a primary factor and as interactions with resins and with

temperatures (P equal .001 in all cases). The first arose from the

tendency of the Hughes weights to be rather consistently lower than the

Aminco values at corresponding temperatures. The laboratory resin

interaction simply means that Aminco discriminated between resins

more clearly than Hughes. The laboratory-temperature interaction can

be interpreted as a reflection of the tendency of the_Aminco weights to

approach an asymptote at high temperature contrary to the case of the

Hughe s data.

Figures 11, 12, and 13 are plots of the data analyzed and show

the effects.
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TGA curves of sample XRl-commercial phenolic novolac.

Effect of Heatin_ on TGA Curves

TGA data from Aminco obtained on two specimens of commercial
f-

phenolic novolac were available for analysis of the effect of using dif-

ferent heating rates.

Inspection of the smoothed curves reveals that the lower heating

rate (180°C/hr) results in the high temperature flattening occurring at

a higher residual weight level than that of the higher heating rate

(360°C/hr). It was decided to establish whether or not this difference

was attributable to random error.

The numerical values were selected for analysis following the

procedure described in last month's report.

The analysis showed that the only significant factor, aside from

temperature of course, was the temperature-heating rate interaction

(P = . 01). Thus the difference in high temperature flattening levels

was real.
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The effect is illustrated inFigure 14. These curves are

smoothed plots of the 18 selected values. Similar curves of the

Hughes low factor novolac are shown in Figure 15.

It is interesting to note that the heating rate effect is reflected to

a rather minor degree in the two calculated integral procedural

decomposition temperatures as shown in Table 20.

The reversal in rank from one ipdt to another calls for some

comment.

The lower heating rate is associated with a higher final weight.

This can be construed as a higher degree of "refractoriness" which,

according to Doyle {Reference 7) (WADD-TR 60-283), is discounted in

the TASK, _ calculation. Possibly this property has been over-

discounted.
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}

[

Heating Rate
°C 1 hr

180

TA, °C

741

737

TA,K, °C

360

(Each calculated temperature is a mean of two values)

Table 20. Effect of heating rate on TGA.

392

402

Considering the small effect of such a large difference in heating

rates it is obvious that test results will be relatively insensitive to the

minor fluctuations in heating rate to be expected in practice. (Some

fluctuation might be anticipated from one test to another due to differ-

ences in ambient temperature or changes in air currents• )
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-_

:;! ' _ _IR Absorption Spectrophotometry .................

IR spectrophotometric scans on the commercial novolac were .....

run with a Beckman hod. IR-5 instrument, and with a Perkin-Elmer .....

Model 12, in an effort to characterize the novolac.

i The spectra of several samples of novolac were compared ..........

with those of two similar commercial Novolacs. The commercial

novolac samples were taken up in dry acetone and the resulting solu ......

tion was placed on Na CI windows and evaporated. A strong absorption

at 9.8 microns was observed in the spectra of the Langley novolac but .................

no ahsorption at this wavelength was found in the spectra of the other ....

two tested. Since in an acid-catalyzed phenol-formaldehyde condensa ......

tion few methylol groups would be formed, the 9.8 micron band is

attributed to the hexamethylene tetramine {Hexa) in the Langley novo- -............

lac. The carbonyl content of the Langley novolac, based on absorption

at 6.22 microns and the apparent advancement of cure, as indicated by_ ........

the relative intensities of the 12.2 and 13.2 micron bands 1, was very 'I .........

nearly the same as the other resins., The Langle.¥ novolac resin con ..............

tains some free phenol as indicated by absorption at 14.4 •microns as .-_ ..........

well as by hydroxyl stretching absorption. . ....
: ..................... . .........

No quantitative measurements of carbonyl concentration or per-

centage of 2/Z1 methylene linkages in the Novolac were made pending .........................

choice of an optimum procedure for examining samples. It was deter-

mined that quantitative IR measurements can best be made on novolac .......

samples in acetone solution at a 4-5% solids level in accordance with

the method of Reed and_Favero (Ref. 8). - ..........
i ........

Molecular Weight Determination _-_:_

The molecular weight of water extracted commercial novolac
i i .........

was determined by ebulliometric methods using dioxane as solvent. _ ...........

The number average molecular weight extrapolated to zero concentra-

tion of washed and dried commercialnovolac was 1337. Correcting .......

this value for the approximate 5% of low molecular weight products

_ ............. removed during the extraction of hexa, provides a molecul"ar weight of .................

i
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...... approximately 800. A description_of the procedure for determining

molecular weight is found in Appendix III, Item 3.

Summary of Commercial Phenolic Novolac

Characte rization

The commercial resin used in the Langley formulation is a typi-

cal phenolic novolac having a fast cure rate and containing a very low

percentage of foreign impurities. The data developed on this material

is summarized in Table 21.

The investigation revealed that large differences in flow time and

volatiles content occur within a drum of the material and theref6re it

Prope rty Value

Mesh Size

Bulk Density

Molded Densit :
.... y ......... .......

All passes 325 Mesh

0.35 gm/cc

i. 27 gm/cc

Gel Time at 300°F [

Volatile Content (45 min. @ 300°F)

Hexamethylene _Tetramine Content- _i

Total Nitrogen

Water Extractable s

Water Soluble Low Molecular Wt.

Melting Point (water extracted Mat'l)

Number Average Molecular Weight'

Viscosity Index

Flow (Mesa Spiral)
Z500 lbs, press load at 300°F

Products

99- 125 Sec.

~5%

970

3570

14.7%

5 - 6%

114°C

~800

2.3

2, 8-3.5 inches

Table 2 I. Summary of properties of commercial phenolic
novolac used in the Langley ablator.
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IsHould be thoroughly mixed before use. The question of batch to batch

variability remains unanswered except for the limited evidence

iobtained in comparing gel times of ]Batch No. C633A and CI020A. The

material tested was of high purity in terms of ash content. The high

ipercentage of water soluble organic material may be a source of vari-

ability in future batches because it indicates incomplete reaction and

insufficient stripping of the finished product. These are indications

however that the presence of the low molecular weight materials

increases flow of the resin and is therefore advantageous in

processing.

2.4.2 Phenolic Microspheres

L

_.4_ .......

In characterizing the phenolic microspheres it was considered

necessary to obtain an understandir_g of the particle size distribution i

and the damaging effects of pressur_e. Considerable work was per-

formed in developing methods for determining true density and the

percentage of fractured microspheres under vacuum pressure condi- :

• tions, It is believed that.the_information developed will be helpful in .... :..... -....

..... 'the understanding of the role of miclospheres in syntactic foams and i .......

..... the development of optimum processes. ........

' ..... ! ...............

...... Apparent or Bulk Density • i ......

__ Using the procedure described for bulk density measurements of ! ........
i

.... phenolic novolac, measurements were made on as-received micro- -....

...... spheres and on microspheres subjected to 100% relative humidity for .................

- 24 hours. Table 22 summarizes the data. " "

Volatile s _ .....

i:: Volatiles determinations were run on six samples taken from

.... various locations in adrum of phenolic microspheres, Batch No. .. r
..... i .......

_ C505. Two determinations were run on each sample. The weight loss .....

" ..... was recorded after 30 minutes at 300°F. An additional 15 minutes .....

: : ...... resulted in no further weight loss. Table Z3 summarizes the data ............



b
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Volume of Measure 111 cc

Container TareWeight 17.6 gm

Treatment Net wt-Gm Density Gm/cc

Vibration Compacted 11.7 . 105
(test abandoned due to
extreme variation of bulk)

No Compaction

No Compaction

No Compaction

No Compaction

No Compaction

Ave rage

9.6

9.0

9.2

9.5

9. Z

.O86

•081

•083

.086

.083

No Compaction
{High humidity)

11.2

_ 10.6

11.3

• 084

•i01

•095

•10Z

................ 099 .......

Table ZZ. Bulk density of phenolic microspheres.

Sample
De signation

Location of Sample
In Drum

Run

No.
Volatiles (45 Min.
at 300°F) Percent

XBBO Bottom, outside 1 4.07
Z 3.50

XBBC Bottom, center 1 5.07
2 4.08

XBCO Center, outside 1 3.64
2 3.75

XBCC Center, center 1 3.56
Z 3.60

Top, outside I 3. 50XBTO
Z 3.58

XBTC Top, center 1 3.82
Z 3.90

•",, , Table 23, Volatile content iof phenolic microspheres.
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!'<_, _ 'Ash Content and Emission•• Spectrographic Analysis
I

...... The ash content of the dried samples from the volatiles determi-'

nations was determined by ignition to constant weight at 1300°F. The _

values in Table 24 are based on the dried weights after removal of vol-:

iatile s.

The ash remaining (5.38%) after the ignition of sample XBCO

from a drum of phenolic microspheres was subjected 'to emission

'spectrographic anaIysis. TabIe 25 gives the semiquantitative results

based on the ash weight and on the weight before ignition.

Sieve Analysis

The particle size and distribqtion of phenolic microspheres was

completed for twenty-one samples of approximately 15 grams each.

Three samples were run from each of six locations in the drum and

three samples from the complete mixture of the drum. The specific

sampling locations were at the top, center and bottom of the drum with

........ 'one set along an outside edge and one set along the center axis. Six

Sample

De signation

XBBO

XBBC

XBCO

XBCC

XBTO

XBTC

Location of Sample
in Drum

Bottom, outside

Bottom, center

Center, outside

Center, center

Top, outside i

Run

No.

1
2

Top, center

Ash Content,

Percent

4.98
5.45

4.99

4.86

5. 38

5.19

5.09
4.68

5.45

5.31

1

2

5.02

5.02

i') q 1/ [ ?

Table Z4. Ash content of phenolic rnicrospheres.

• _°
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Element

Sodium

Pota s s ium

C alc ium

Silic on

Ma gne s ium

Aluminum

Boron

Mangane s e

Lithium

Copper

Silve r

Percent (based

on ash)

41.

2.2

0.19

O. 44

O. 066

O. 063

0.016

O. 0011

O. OO91

O. 031

O. 0079

Percent (based on

unignited weight)

2.2

0.12

0.010

O. 024

O. O036

O. 0034

O. 0008

O. OOOO6

O. 00049

O. 0016

O. 00042

...... Nickel- ............................ Trace ,

Strontium Trace:

Chromium O. 00082 0.000044

Table 25. Constituents of ash fromphenoIic microspheres.

.~

!

! .......

i

......... pan caught all particles smaller than 0.0017".

sieving are shown in Table 26.

sieves were used. The sieve numbers and their corresponding maxi-

mum hole sizes are as follows: 50 - 0.0116", 80 - 0.0070" 120

0.0049", 170 - 0.0035", 230 - 0.0024" and 325 - 0.0017". The lower

The results of the

Particle Size and Distribution

The measurement of particle size and distribution was deter-

! .......i_i mined by sieve analysis and photomicrography.
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Percentages on Each Sieve

Sieve Top Center Top Outside

No.
I 2 3 I 2 3

5O

80

120

170

230

325

Pan

5O

8o

120

170

.......... -££:- " - 230 ....

325

.... Pan

O. 42

6. 54

34.75

30.08

17.94

8.29

1.98

O. 40

7.79
35. 56

29.80

15.73

8.00

2.72

0.41

5.55

35.08

30.35

16.69

8.:85

3.06

O. 39

4.09

34.89

33. 32

16.78

7.96

2.57

0.39

4.24

32.20

33.43

19. 18

8.06

2.49

Center Center Center Outside

0.31

3.72

0.35

4.06

30.69

34.39

17.20

9.82

3.49

0.38

4.31

28

33

19

I0

3

.02 32.33

.58 33.50

.:65 18.14

.98 8.79

.75 2. 55

50

80

120

170

230

325

Pan

50

80

0.39

3.88

30.44

34.06

17.58

10.64

3.00

O. 57

4.15

31.92

32.62

18.24

9.75

2.76

0.31

4. 59

Bottom Center

O. 56

4.24

32.28

32.85

17.37

9.74

2.95

O. 40

3.64

27.28

34.57

19.44

i0 49

4.:19

O. 46

3.80

28.44

34.69

0.56

4.21

34.03

31.73

17. 17

9.93

2.38

19.91

9.72

2.97

0.40

3.91

30.99

33.52

18.72

9.43

3.04

_-" Table 26_ ,,

0.44

4.02

28.99

33.92

19.28

I0.34

3.00

Bottom Outside

0.64

4.12

30.04

33.60

18.95

9.72

2.92

Drum Mixture

0.36 0.37

4.42 i 4.45

Results of sieving phenolic microspheres.

0.52

3.96

30.01

33.11

18.53

I0.75

3.11

L.
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- Percentages on Each Sieve

Drum Mixture (continued)Sieve
NO.

120

170

230

325

Pan

31.71

32. 51

17.80

9.30

3.79

2

30.27

33.31

18.45

9.46

3.74

32.47

33. I0

17.87

9.25

2.49

Table 26 (continued). Results of sieving phenolic microspheres.

Sieve analysis was performed using 25 gm samples and the fol-

lowing sieve numbers as shown in Table 27.

Samples were selected from various locations within the drum to,

study the effects of packing and handling. Photomicrograph at 50X and

........ .... _. I!00X were taken by taping microspheres-to pressure sensitive tape.

.... Figure 16 illustrates a typical variation in size of microspheres

..... 7 For the sieve analysis one quart of microspheres was taken at

'_ _ each of six points within a drum. From each quart three specimens

• were drawn and tested for particle size distribution. The question to

.. be resolved was whether the 18 distributions could be considered uni-

.... form or biased with respect to location in the drum.

, Inspection of the data indicated that the distributions were appar-

.... ently different. Rather than compare all 18 distributions it was

...... decided first to compare the two extremes by a graphical method.

..... Cumulative distributions of the two extremes were calculated and

_ plotted on probability graph paper, (see Figure 17). This figure shows

..... that, with the exception of the data of the coarsest screen, all of the

._ points of a given distribution fall quite close to a straight line. Note,

.... however, that the points of the two distributions do not fall on the same

......... straight line. Therefore each set of data can be approximated by a :

different normal distribution except for the previously noted values.
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Sieve No. 

50 

80 

120 

170 

230 

325 

Opening, Ins. 

0. 01  16 

0.0070 

0.0049 

0.0035 

0.0024 

0.0017 

Opening, Microns 

177 

125 

88 

62 

44 

Table 27. Sieve numbers and openings. 

Figure 16. Photomicrograph of phenolic 
mic rosphe r e  s a t  1 OOX. 
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Figure 17. Distribution of particle sizes of phenolic microspheres.

At this point it might be well to digress and consider some addi-

tional information that seems to throw light on the apparently anoma-

lous values. Recently some microscopic examinations of this coarse

fraction have been made. These examinations revealed that this frac-

tion did not consist of only large microspheres. On the contrary it

.... also contained irregular chips of phenolic resin and asymmetric

.... agglomerates of fused microspheres. (Figure 18) Thus this fraction

. can be considered as having been drawn from a different universe than

- the other fractions and should not be included with them. In short this

• point should not be included with the others in the figure.

..... Of course it should be pointed out that this fraction •is so small

that it is not likely to give rise to any problems despite the heteroge-

- neity of the shapes of its particles.

Returning to the probability plots it is quite evident that the

- means of the two distributions are different but that the standard devi-

• ..... ations are approximately equal. (Note the parallelism of the lines. ) '

.... Since these two lines •represent the extremes, the remaining 16 distri-

butions will fall in the band between them. Considering the narrow-

ness of the band one can say that from a practical standpoint there

_: ..... does not appear to be any important difference between distributions.

__q
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Figure 18. Photomicrograph (400X) of phenolic 
microsphere agglomerate. 

However since there  seemed to be a difference between the 

means of the ex t remes  it was decided to per form a s ta t is t ical  analysis 

to determine whether there  was any variability f r o m  specimen to spec- 

imen and, i f  s o ,  i t s  association with location in the drum. For  this 

analysis  it was decided to  use  the medians of the 18 distributions a s  

var iables .  (See Table 28. ) 

An analysis of variance showed that the only significant factor (at 

the P equal . 0 1  level)  was the axial distance f rom top to bottom. 

Neither the radial  distance nor the interaction was significant. 

t h e r e  appears  to  be some tendency to stratification in horizontal planes 

Thus 
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.%! _[ Vr

Top of Drum

Top of Drum

Top of Drum

Center of Drum

Center of Drum

Center of Drum

Bottom of Drum

Bottom of Drum

Bottom of Drum

A1 ong
Axis

.00451

.00461

.00449

.00427

_00429

_00415

00433

.00435

00414

Along
Wall

.00445

.00435

.00429

.00436

.00420

.00422

.00440

.00427

.00424

L ........

Table 28. Median mesh sizes of phenolic microspheres.

but only random variability in a given plane. The effect is shown

below of the 95_0 confidence limits of the means with respect to the

significant factor.

Drum

Location

Top

Center

Bottom

95% Confidence Limits

Low

.00437

.00417

.00421

High

.00453

.00432

.00436

..... Center and bottom are indistinguishable from one another but the

..... top tends to be higher. However the differences are so small that in

sampling this drum for quality control testing it is unnecessary to

maintain the axial and radial distinctions used in this work. In other

words, this work leads to the conclusion that a sample drawn from any

part of the drum can be considered as representative of its contents.

Since only one drum was involved in this program the results

cannot be generalized to apply to all drums without additional work.
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!The sieve analysis results are significant however in adding to our .........

understanding of the physical nature of the microspheres and will aid -

in producing a characterized and uniform material. It is obvious tha't ......

all fractions not passing a 80 mesh opening sieve should be discarded _ ....
i

in formulating a controlled syntactic foam.

True Density of Phenolic Microspheres

The true density of phenolic microspheres was determined by the

use of the special apparatus shown in Figure 19. The method consists

of displacing a known weight of liquid of known density in a modified

pycnometer. Due to the low density of the microspheres, a pyc. nome-

ter with a sintered glass septum was used. The displacement liquid

used was toluene (density at 77°F = 0.866 gm/cc) modified by the

addition of a few drops of wetting agent. Duplicate tests were run on

samples taken from the top and the bottom of the shipping drum. The

results show a significantly large difference in true density as meas-

ured by this method. (See Table 29.)

De sc ription

Weight of Microspheres,

gm

Weight of Toluene, no

Microsphere s, gm

Weight of Toluene, Micro-

spheres present, gm

Volume of Microspheres
(decrease in volume of

Toluene), cc

Density of Microspheres,
lb/cu ft

Location Within Drum

Top Bottom

Run #I Run #2 Run #i Run #2

6.292

240. 079

z8.825

6.695

Z65. 042

238.968

30.108

13.88

6.846 6.0341

240.779

27.384

13.6Z 15.60

243.506

24.868

15.14

Table 29. True density ofmicrospheres.
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Figure 19. Modified pycnometer for determination of t rue  
density of microspheres.  
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' Effect of Pressure on Flotation ...

Preliminary attempts to determine the effect of press ur_ o_th_

flotation of microspheres in water was abandoned because the spheres

slowly absorbed moisture and sunk. Therefore the effect of pressure

on flotation using toluene was determined on a sample of microspheres,

Batch No. C505. A one-gram sample of microspheres dried for two

hours at 160°F, is placed in a large separatory funnel and 400 ml of

water containing 2 drops of Cenco wetting agent was added. After

stirring thoroughly, the mixture is allowed to stand for 10 minutes.

The microspheres which have settled are collected on a dried, weighedl

filter paper and weighed after drying to constant weight at 225°F.

Additional water is added to the separatory funnel to replace the :

amount lost during separation of the settled microspheres. (See

Figure 20. )

The funnel containing the remaining microspheres is immediately

placed in a pressure chamber and nitrogen is admitted until the desired

pressure is obtained. The pressure is released immediately.

The microspheres which have settled under pressure are col-

lected on a drieds weighed filter paper and are dried to constant weight

at 225°F. The microspheres which are still floating are similarly

Collected, dried, and weighed.

EFF[¢TOFPRESSU_ ONFI.OTATIOX
I00

I

",,\
. \

\
4O

TRUEI_NSIP¢ lY FLI_IIRS"

l_g |b_IftIAT Opt!

2_ 5 tbs/ft3AT500 psi
3O

0 200 400 600 _0 1000 12Q0

PRESSURE,PSIG

Effect of pressure on flotation of rrdcrospheres.Figure 20.
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The pressure was varied from 100 to 1000 psig. In some cases,

a fairly large percentage of microspheres were not accounted for. This

may be due to mechanical loss of the microspheres during admission

of the pressurizing gas. The results are shown in Table 30.

Trne Density of Pressure-Graded Microspheres

A small quantity of microspheres mixed with toluene was sub-

jected to 500 psig by the use of helium gas. The results of this pres-

sure grading are as follows:

Broken, no pressure

Broken, under pressure

Unbroken, under pressure

I. 80%

35.59_o

58.49_o

The true density of the floaters was determined from pycnometer

measurements and found to be 23.21 pounds per cubic foot.

A repeat analysis gave 1.76, 37, 87, and 58.68_0 for the micro_

spheres broken under no pressure, broken under 500 psig and unbroken,,

respectively. The true density of the floaters was 33.75 pounds per

cubic foot.

Analysis of the Effect of Pressure on Microspheres

The strength of A_icrospheres is of concern when this material

is to be used as a molding material filler. It was thought that this

property could be approximated by determining the pressure required

to collapse the IVlicrospheres.

Data were collected on the effect of hydrostatic pressure {in

toluene) upon the buoyant weight fraction of microspheres. The

measurements consisted of weighing the fraction of microspheres

floating at each value of a non-arithmetic sequence of pressures rang-

ing from I00 psig to I000 psig. In each case a zero pressure control

was weighed. At a given pressure both measurements were made on

three separate specimens of material'.

In order to determine the nature of the distribution as rapidly as

possible graphical screening methods were employed. It was evident

immediately that neither a normal nor a 10g normal distribution applied_
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Pressure,

Psig

100

Percentage _

Settled, No
Pre s sure

1.66

(1.70, 1.63, 1.66)

Percentage _

Settled Under

Pressure

6.33

(6.47, 6.42, 6.1)

200 1.70 11.28

(1.77, 1.64, 1.68) (11.33, 11.32, 11.20)

3OO 1.57

(1.52, 1.62, 1.56)

400 1.60

(1.68, 1.65, 1.48)

17.91

(17.66, 18.42, 17.65)

25.05

(25.35, 24.95, 24.8d)

450 1.58 27.54

(I.52, 1.58, 1.65) (27.89, 27.47, 27.26)

500 1.67 33.16

(1.65, 1.68, 1.68) (33.49, 32.53, 33.46)

550 I. 64 35.75

(1.68, 1.65, 1.60) (36.03, 35,62, 35.59)I

6OO 1.64

(1.66, 1.62, 1.64)

39.32

(39.25, 39.36, 39.34)

Percentage _

Floating Under
Pressure

90.47

(90, 04, 90.49, 90.88)

84.20

(84. 40, 84.08, 84. I0)

77.52

(77.72, 77.31, 77.52)

72. 12

(72. I0, 72.15, 72. II)

68.50

(67.55, 68.97, 68.98)

63.87

(63.71, 64.13, 63.78)

61.00

(60.86, 60.92, 61.24)

57.63

(57.95, 57.84: 57. I0)

51.69
700 1.56 45.79 11(51.73,(1.57, 1.58, 1.53) (45.80,45.75, 45.82) 51.62, 51.73)

8OO i. 40

(1.27, 1.46, 1.47)

49.08

(49.22, 48.97, 49.05)

900 1.43 51.71

(1.25, 1.83, 1.22) (52.21, 52.70, 50.21)

I000 I. 35 60.69

(1.26, 1.49, 1.30) (60.68, 60.81, 60.56)

•Figures in parentheses are individual values

48.70

(49.03, 48.23, 48.85)

46.18

(45.32, 45.16, 48.07)

37.09

(37.02, 37.12, 37.14)

Percentage*
Unaccounted

For

1.40

(1.39° 1.46, 1.34)

2.83

(2.50, 2.99, 3. O1)

3.18

(3. 10, 3. 17, 3.27)

1.53

(1.79, I. 25, I. 56)

2.04

(2.04, 1.98, 2.11)

1.30

(1.18, 1:65, 1.08)

1.60

(1.42, 1.81, 1.57)

1.35

(I. 09, i. 17, I. 80)

0.94

(0.90, I. 01, 0.92)

0.82

(0.47, 1.34, 0.64)

0.64

(I. I0, 0.31, 0.50)

I. 36

(I. 04, 1.95, I. 09)

...,.

Table 30. Effect of pressure on flotation of phenolic

microspheres.

However an exponential distribution apparently provided an excellent

fit to the data. This is shown in Figure ZO where the means of the

weight percent surviving a given pressure have been plotted against

that pressure.

Note that a log relationship is strongly indicated. Thus the

distribution can be approximated by an equation of the form

inf = KP+C
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where f is the weight fraction surviving application of a pressure, P,

and K and C are constants. If all of the n_icrospheres floated at zero

pressure then C would be zero but since such is not the case, this

constant must also be estimated.

Since the data had been collected in sets of six readings,it was

decided to estimate the parameters by,at least squares technique

involving pooling of variances and covariances within sets. This

procedure would tend to "average out" the effects of possible trends

upon the estimate of the slope.

The calculations yielded the following estimates:

1% (correlation coefficient) = -0. 997

K = 8.89 x 10 -4 inZ/ib

C = -1.50x I0 -z

(The correlation coefficient is highly significant at a level of P

less than .001).

The relationship can be expressed as

-8.89x I0"4 P ..........
f = 0. 985 C

That is, 0. 985 is the mean weight fraction of microspheres

floating at zero pressure. (I. 5% by weight are probably broken micro-

spheres or "sinkers" in the as-received condition. )

By analogy with "half-life" in the disintegration of radioactive

materials we can express the slope in terms of "half-pressure" or

pressure required to reduce the weight fraction of survivors by 50%.

This "half pressure" value is 770 psi. It should be noted that this does

not necessarily correspond to a median if the latter is defined as that

value of pressure at which the number of survivors are reduced by 50%.

Since the material is molded under a force which would be equiv-

alent to a hydrostatic _pressure of Z000 psi within a material behaving

as a fluid it was thought that it would be of interest to extrapolate the

above equation to this condition. The weight percent of survivors was

i6.6.
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The true density of the microspheres was determined for the

floaters at 0 psi and 500 psi. As expected the density of the 500 psi

survivor s was considerably higher than the unpressurized material.

True Density of Floaters at 0 psi 13.9 lbs/ft 3

True Density of Floaters at 500 psi 23.5 lbs/ft 3

Effect of Pressure Grading on Sieve Fractions of Microspheres

Two sieve fractions were subjected to helium at a pressure of

500 psig:

• passed 30 mesh, retained on 50 mesh

• passed 170 mesh, retained on 230 mesh

The results of this pressure grading, for the two sieve fractions

are shown in Table 31.

As expected, a much larger percentage of the finer mesh micro-

spheres withstood pressurization without breaking.

The true density was determined of the original sieve fractions

and of the floaters from both sieve fractions. The results obtained

are shown in Table 31.

Flotation Analysis of Microspheres Tested at 100 and 300 psi

In order to check the possibility of up-grading microspheres by

pressurization at low pressures, a determination was made of the

fraction broken and density of floaters after subjection to 100 and 300

psi. The data is summarized belgw.

As Rec'd (16.1 Ibs/ft3)

True Density Percent OF
of Floater s

Floater s
Lbs/cu ft

1.8

After 100 psi 15.5 90.4

After 300 psi 21.9 79. I
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Sieve

Fraction

8O

230

Percentage

Sealed,

NoPressure

1.74

2.90

Per centage

Settled o

Under Pressure

53.74

30.49

Percentage

Floating e

Under Pressure

44.22

66.99

True Density0 Lbs/CuFt

Fraction

13.9

15.7

Floater s

27.0

28.6

Table 31. Effect of pressure on sieve fraction of microspheres.

Effect of Sieving and Drying on Density of Microspheres

Two experiments were run to determine (1) if the drying of

1Viicrospheres caused serious damage and (2) if eliminating the very

large (+50 mesh) and very small microspheres would seriously affect

density. The data is summarized below:

As. After Drying -50 Mesh and
Received 3 hrs @ 225°F +230 Mesh

True density, lbs/ft 3 16.1

Fractured microspheres 1.79
(sinkers) at 0 psi - %

16.5 15.9

I. 81 .33

From the above data it was concluded that drying the micro-

spheres caused little damage and that sieving was a satisfactory method

of up-grading.. Evidently the use of the 50 meshscreen eliminates the

large spheres and agglomerates; and the 230 mesh screen separates

most of the broken fragments and very small high density spheres.

The yield which would he obtained sieving the Microspheres

(-50 mesh and +230 mesh)was determined as follows:

Wt-% Microspheres retained on 50 mesh 0.33

Wt-% Microspheres passed 50 mesh 90.05
retained on 230 mesh

Wt-% Microspheres passed Z30 mesh 9.15

Ther mogr avimetric Analysis

TGA was performed at Hughes on samples of phenolic micro-

spheres from two different batches. The degradation curves for the
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two samples were identical. ,% typical TGA curve is shown in Fig-

ure 21. The curve is typical of phenolic materials.

Summary of Characteristics of Phenolic Microspheres

The phenolic microspheres were found to have a wide particle

size variation following a normal distribution except for a small

fraction of large agglomerates and fractured particles. The true

density of the spheres was found to vary from 13.5 to 16.5 ibs/ft 3.

The ash content was high and contained a large proportion of sodium.

The sphere's were found to be easily damaged by hydrostatic pressure

and the large diameter spheres were more susceptible to damage than

the small. The data on microspheres is summarized in Table 32.

Pr ope rty Value

Volatiles (as received)

Ash Content

Major Constituent of Ash

True Density

Bulk Density

Sus c eptibility to Hydro static Pr e s s ur e

50/0

5%

Sodium

13.6 to 16.5 ibs/ft 3

5.24 Ibs/ft 3

% Floating at 100 psi

500 psi

1000 psi

Particle Size Distribution

20/0 Smaller than

0.5°[0 Larger than

Balance evenly distributed

90%

61%

37%

O. 0017 inch dia

O. 016 inch dia

Table 32. Summary of characteristics of

phenolic microsphere s.
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phenolic microspheres.

2.4.3 Powdered Nylon 66

The purity and uniformity of the powdered Nylon 66 was expected

to be high because this polymer is produced Continuously on a large

scale to exacting specifications. This prediction proved to be true as

shown by the following data•

Apparent or Bulk Density

The bulk density was measured with the same procedure

described for the resin and phenolic microspheres. {See Table 33. )

Melting Point

The melting point was determined on six samples taken from

various locations in a drum of 80 mesh Nylon 66. Two determinations
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Tr e atme nt

Vibration Compacted

Vibration Compacted

Vibration Compacted

Net Wt-Gm

62.3

55.5

59.4

Density Gm/cc

.561

.500

•535

Average .532

No Compaction

No Compaction

No Compaction

55.9

52.7

52.4

.504

.472

•472

Average .484

No Compaction

High Humidity

High Humidity

55.8 .503

57.0 .514

54.2 .488

Average .502

Table 33. Bulk density of powdered Nylon 66- 80 mesh.

were made on each sample using a Fisher-Johns melting point

apparatus. Table 34 gives the melting point values obtained.

Sample Location of Sample Run Melting
Designation in Drum No. Point, "*C

iI

XNBO Bottom, outside 1 258

2 257

XNBC Bottom, center 1 258
2 257

XNCO Center_ outside

XNCC Center, center

257

257

1 255
2 254

XNTO Top, outside 1 254
2 255

XNTC Top; center 1 255
2 256

Table 34. Melting point of Nylon 66 -

= 256.1

s = ±1.4

80 mesh•
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Volatile s ....

Volatiles determinations were made on six samples taken from, '

various locations in a drum of 80 mesh Nylon 66. Two determinations

were made on each sample. Initially, the weight loss was determined

after 30 minutes at 300°F. An additional 15 minutes at 300°F resulted'

in no additional weight loss. Table 35 summarizes the results.

Ash Content and Spectographic Analysis of Ash

The ash content of the dried samples remaining after the vola-

tiles determinations described in the previous section was determined

by ignition to constant weight at 1300°F. The values of ash con_ent in

Table 36 are based on the dried weight, not the original weight prior

to the analysis for volatiles.

The ash remaining (0.36%) after the ignition of 80 mesh Nylon 66

was subjected to emission spectrographic analysis. Table 37 gives the

semiquantitative results based on the ash weight and on the weight

before ignition.

Sample Location of Sample Run Volatiles {45 min.
Designation in Drum No. at 30Q°F)Percent

XNBO Bottom, outside 1 0.13
2 0.14

XNBC Bottom, center 1 0.24
2 0.33

XNCO Center, outside 1 0.35

2 0.36

XNCC Center, center 1 0. 19

2 0.22

XNTO Top, outside 1 0.22

2 0.24

XNTC Top, center 1 0. 12

2 0.12

= .212
s = . 105

Table 35. Volatile content of Nylon 66 - 80 mesh.
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Sample Location of Sample Run Ash Content,
De s ignation in Drum No. Per cent

XNBO Bottom, outside 1 0.30
2 0.33

XNBC Bottom, center 1 0.27

2 0.28

XNCO Center, outside 1 0.32

2 0.29

XNCC Center, center I 0.36

2 0.31

XNTO Top, outside 1 0.30

2 0.32

XNTC Top, center 1 0.27

2 O. 38

Table 36.

= .311

s =. ±.034

Ash content of Nylon 66 - 80 mesh.

Element

Pota s s ium

Sodium

Copper

Ma gne sium

Iron

Silver

Chromium

Calcium

Lithium

Silicon

Table 37.

Percent (Based

on Ash)

37,

4.0

0. ii

Percent (Based on
Unignited Weight)

0.28

0.030

0.0008

0.0017

0.0081

0.0012

0..0037

0.035

0.0057

0.036

0.000013

0.000062

0.000009

0.000028

0.00027

0.000043

0.00027

Spectrographic analysis of ash from Nylon 66.
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Total Nitrogen

The total nitrogen was determined on two samples of 80 mesh

Nylon 66. Sample XNBC was taken from the bottom-center of the

drum and XNTC was taken from the top-center. Two determinations

were made on each sample. The values, obtained by the Dumas

method, are shown in Table 38.

Nylon Sieve Analysis

Particle size and distribution measurements were made for nine

samples of nylon 66. One sample was run from each of six locations

in the drum received from Liquid Nitrogen Processing, Malver_,

Pennsylvania. The specific locations were at the top, center and bot-

tom of the drum with one set along an outside edge and one set along

the center axis. Originally, one sampling was made at each location,

however, when the data appeared to be non-uniform an additional set of:

three samples were made to verify the non-uniformity within the drum.

The sieving was accomplished with a Tyler Rot-A-Tap and six

sieves. The sieve numbers and their corresponding maximum hole

sizes are as follows: 50 - 0.0116", 80 - 0.0070", 120 - 0.0049",

170 - 0. 0035", 230 - 0. 0024", and 325 - 0. 0017". The lower pan

caught all particles smaller than 0. 0017". The results of the sieving

are shown in Table 39.

The cumulative weight percentages of material coarser than a

given mesh opening were calculated for the nine specimens and plotted

on probability graph paper (see Figures 22 and 23). It should be pointed

Sample

De signation

XNBC

XNTC

Table 38.

Run No.

1
2

Total Nitrogen,
Per cent

11.72
11.51

ii. 92
11.87

Total nitrogen content of Nylon 66.
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Percentages: on Each Sieve

Sieve

No.

50

80

IZO

Top Center

21. 39 23. O3

40. 96 39. 83

14. 68 15. 39

Center

Center

12.26

35.03

ZZ. OZ

Bottom Center

3.32 2.29

19.25 14.23

23.11 21.33

170

230

325

Pan

50

80

120

170

230

325

Pan

7.08 6.81

4.58 4.26

4.29 4.28

7.01 6.40

10.73

6.49

5.78

7.69

18.20 19.51

10.64 13.16

9.99 IZ.45

15.49 17.04

C enter
Top Outside Outside Bottom Outside

21.55

36.84

16.42

7.99

5.17

4.55

7.49

14.76

41.49

18.07

8.22

4.90

4.83

7.74

6.79 7.00

35.55 31.02

20.48 21.95

12.62 12.98

8.53 8.22

7..13 7.41

8.89 11.43

Table 39. Results of sieving of Nylon 66 - 80 mesh.

out that all plotted data are not of equal statistical weight. The means

of two screenings were used in the case of specimens taken at drum

wall-bottom, at axis/top, and at axis/bottom. The other plots are

based on individual readings.

Note that both figures show some stratification of particle sizes,

ranging from coarser at the top to finer at the bottom. Or, more

precisely, distributions are centered at higher values at the top than at

the bottom but with extremely large overlaps of all distributions.

The figures indicate that it is quite probable that the distribution

of particles from a given specimen is normal. It was decided to

establish whether such was the case for each of the sieve specimens

because this information would be of value later in setting quality con-

trol limits.

72



Z
U

_z

_z

O

w

• c9
_z
Z
tJJ
Q.
0

-r
(/I
W

0.012

, CENTER
0.010

0,008 BOTTOM OF DRUM.-. _

0.006

0.004

O.O02

OF DRUM

• TOP OF DRUM

\

\
\ \

0 _ I I | I I t I
0.01 0.1 t tO 20 40 60 80 90 95

WEIGHT P[RCENT LARGER THAN OPENING

0.0*0

0.006

0.004

0 w

o.O! o.I

Figure 23.

Distribution of particle sizes of Nylon 66 - 80 mesh.
...... Samples taken along drum axis.

F
OF" DRUM

, ,o go 40 so eo ,o ,_

WEIGHTPERCENTLARGERTHANOPENING

Distribution of particle sizes of Nylon 66 - 80 mesh.
Samples taken along drum wall.

98

98

_(..

73



_The cumulative weight fraction coarser than each mesh opening

was taken as a value of the normal probability integral• From this,

the corresponding upper limit of integration, expressed as the deviate

of unit variance, was found from tabulated values of the normal proba-

bility integral•

If the data of each specimen were normally distributed, then its

mesh openings and normal deviates should be linearly related. There-

fore if a highly significant coefficient of correlation were obtained then

the hypothesis of normal distribution could be accepted•

All nine distributions gave correlation coefficients which were

highly significant (P less than . 001).

Since the distributions were normal it should be possible to cal-

culate the statistics (mean and standard deviation) of each one. That is,

if the normal deviates are expressed as linear (least squares) functions

of mesh openings, the constants are related to the statistics• The

slope is equal to the reciprocal o£ the standard deviation and the inter- _

cept is the negative reciprocal of the coefficient of variation, from

which the mean can be calculated. By these procedures, the values

listed in Table 40 were obtained.

Location

Top-Axis

Top Axis

Middle-Axis

Bottom-Axis

Bottom-Axis

Top-Wall

Middle-Wall

Bottom-Wall

Bottom-Wall

Cot relation

+0. 998Z

+0. 9985

+0. 998Z

+0. 995Z

+0• 9906

+0. 9988

+0. 9785

+0. 9981

+0. 9987

-inch

• 0081

• 0083

• 0069

• 0049

•0043

•O080

•O06 3

•006Z

•0059

Deviation-inch
, i,, ,, ±,,,

•0045

•0045

•0039

•0035

•0034

•0046

•00Z8

•0036

•0038

Table 40. Specimen coefficient of mean standard.
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:The particle size data has been generalized and shown in

Figure 24. It should be noted that these are approximately 10% of

particle larger than 50 mesh. This information corresponds to the

visual and microscopic observation of large nylon particles in the

molded ablators. A typical example is shown in Figure 25,

Thermogravimetric Analysis

The thermogravimetric analysis of Nylon 66 - 80 mesh per-

formed at Hughes gave the expected results for nylon. Rapid weight

loss commenced at approximately 300°C with only 10 - 15% of material

remaining at 500°C. At 900°C only the ash remained, The TGA

curves are shown in Figure 26.

Summary of Properties of Nylon 66 - 80 Mesh

TheNylon 66 was found to be uniform in physical properties. The

ash content of 0.4% {primarily potassium) is considered a normal

residue from the nylon manufacturing process. The particle size dis-

tribution for nominally 80 mesh material is wide and contains approxi-

mately 10% of particles larger than 50 mesh. It is possible that such

large particles may spall or melt during ablation and cause uneven and

excessive erosion of the ablating surface. The properties of the nylon

are summarized in Table 41.

0.012
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O.OO8

0.006
x"
0

0.004

0,00_
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Figure 24. Generalized particle size distribution of
Nylon 66 - 80 mesh average.
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Figure 25. Large nylon par t ic le  in f rac tured  surface of 
Langley billet - photomicrograph at 400X. 

2. 4.4 Quality Control Checks on Langley Raw Materials 

As directed by the sampling plan, a sample of each raw ma te r i a l  

and each batch of formulation was taken by Langley NASA for  each 

production billet made. 

uniformity by simple testing procedures.  

degree  of control exerted by Langley, the quality control t e s t s  showed 

good uniformity. The mean, 52, and the standard deviation, s was 

calculated for  each se t  of data. 

These samples were  checked by Hughes for  

As expected f r o m  the high 

X’ 
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TGA curves of Nylon 66 - 80 mesh at 360 ° C/hr.

Property Value

Bulk Density

Volatile Content (as received)

Ash Content

Melting Point

Particle Size Distribution

Total Nitrogen

30.2 ibs/ft3

O. 12 - 0.35%

O. 36%

256°C

- 90% passes 50 mesh

~ 50% passes 80 mesh

- 87% passes 230 mesh

ll. 8%

Table 41. Summary of properties of powdered
Nylon 66 - 80 mesh average.
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Microspheres

Volatile content and true density tests were performed with these

samples. Triplicate samples were removed from each batch of micro-

spheres submitted. Each sample was weighed both before and after

drying in an oven at 300°F for 30 minutes. The percent of volatiles

was calculated from the formula:

w i - wf
x 100

W.
1

whet e

w i = initial weight

wf - final weight

A total of 111 samples were tested. The mean value of the

percent Of volatiles was 6. 549 and the standard deviation was 1. 015.

The true density was performed on 14 samples and discontinued.

The values were each very consistent with the previous results and the

test is tedious and time consuming. The mean value of the true

density was 15.07 pounds per cubic foot and the standard deviation was

0.89 pounds per cubic foot,

Phenolic Resin

Volatile content tests were performed on 111 samples of Phenolic

resin obtained from 37 batches submitted. The procedure was similar

as described above except that the samples were heated from 60 min-

utes. The mean value of the percent of volatiles was 3. 429 and the

standard deviation was 0. 454.

Molding Formulation

Ash content determinations and model billet moldings were made

from the molding formulation batches. Triplicate samples of approxi-

mately 10 grams were ignited at 500°F and heated at 1300°F until they

reached a constant weight. The mean value of 111 samples was 1. 358%

Ash and the standard deviation was 0. Z11.

78



BiLlets were molded in a 4 inch diameter by 1 inch high mold.

The charge weight was 120 grams. The mean value of density of 37

molded billets was 36.08 pounds per cubic foot and the standard

deviation was 0. 803 pounds per cubic foot.

2.4. 5 Summary and Conclusions of Langley Billet Investigation

The results of the investigation of the Langley Ablator may be

summarized as follows"

Raw Materials

• The commercial phenolic novolac is a typical two-step

phenolic molding powder with a low degree of inorganic

impurities. The amount of unreacted phenol and low molec'

ular weight material in the resin is somewhat high but this

may be advantageous in increasing flow during processing,

The variability of the resin from batch to batch was not

established and remains in doubt.

• The phenolic microspheres contain a high degree of inor-

ganic impurities, primarily sodium ions. The material as

received contains a small proportion of fractured micro-

spheres and large agglomerates. The particle size distribu-

tion of the microspheres follows essentially a normal

distribution and the larger diameter spheres are most

susceptible to breakage under pressure. The true density

of the bulk material varies from 13.5 to 16.5 lbs/ft 3 from

, batch to batch and within batches.

• The nylon 66 material is uniform in physical properties.

The 80 mesh powder has a wide particle size distribution

and contains approximately 10% of particles greater than

50 mesh.

Process

The Langley ablator molding process is well controlled and

reproducible. The care taken by Langley is shown by the uniformity of
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the bulk physical properties of the ablator and the smaU variations in

raw material and formulation samples.

Molded Ablator

• The Langley ablators are uniform in density, l_eal density

variation occurred but they are of small magnitude and take

the form of a dense outer shell and a lower density core.

The billets average approximately 1.5 lbs/ft 3 lower than

the 35 lbs/ft 3 density required.

• The Langley Ablator material is low in compressive strength

and tensile strength. It is highly porous. The high degree

of interconnected voids has been confirmed by gas transmis-

sion test, epoxide impregnation, and mercury intrustion

methods.

• The microstructure of the Langley ablator is heterogeneous.

Large nylon particles, voids, and gaps are present and

almost all of the microspheres are fractured. The nylon and

...... rnicrospheres appear to be poorly wetted with resin.

• The uniformity of the production ablators is associated with

the fact that only a single batch of each raw material was

used. The Langley process is very sensitive to changes in

volume fraction of the raw materials,and variations in resin

cure speed. Therefore it can be predicted that the present

process would produce ablators of widely different proper-

ties if other batches of microspheres and resin were used.

Conversely, if equivalent ablators are to be produced from

new batches of raw materials, the process would have to be

modified. Modification of the process would entail a devel-

opment program for each new batch of raw materials.

It was not the function of this investigation to assess the effect

of the Langley ablator_s properties on ablation performance. However,

it was the intent of this investigation to critically analyze the molded

ablator as a plastics composition. From this point of view the formu-

lation and processing of the Scout ablator billets are not optimum. The
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formulation is low in volume fraction of resin and high in volume

fraction of rrdcrospheres. This condition nombined with a processing

method which causes mechanical damage to the microspheres and

large temperature differentials during processing results in a less than

optimum plastic material. The high porosity and low mechanical

strength may be directly correlated with the formulation and process-

ing of the ablator.. The sensitivity of the process to changes in the

properties of the raw materials and the known and suspected variation

of the raw materials is a cause for concern. A more optimum formu-

lation, based on more uniform raw materials, and a less sensitive

process would provide much greater confidence in producing hniform

ablators for the future. The phase of the investigation involved in the

improvement of the ablator as a plastics composition is described in

Section III of this report.
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3.0 DEVELOPMENT OF AN IMPROVED NYLON
PHENOLIC SYNTACTIC FOAM

The molded ablator material for the Scout Nosecap exhibited .....

several deficiencies as a plastics material. These deficiences may be

summarized as (1) low mechanical properties, (2) high porosity, (3)

a difficult process, (4) a heterogeneous microstructure, and (5)

variability of raw materials. The part of the program concerned with ........

improving the ablator was carried out during and after the character- ,

ization of the Scout material. Therefore many of the changes described". .....

here instituted orginally on the basis of experience or insight into the

problem before confirming data was developed from the characteriza- ,

tion of the Scout ablator. The improvements were based on the follow-

:ing approaches ...........

• Upgrading of the raw materials to reduce variability and to

increase the uniformity of the microstructure of the molded .......

material.

• Modification of the formulation to produce a mixture less _.

subject to damage during processing, more amenable to

processing, and to provide improved mechanical properties ........

in the final product.

• A complete change inthe molding process to provide more ......

rapid and uniform curing., less degradation of the raw

materials, and molding-to-size of the Nosecap.

All of these changes are interrelated. It is not possible to

separate raw materials, formulation and processing and clearly

delineate the effect each change has in the final product. However,

the interaction of the various changes will be described as much as -

possible in the following section.
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3,,.I.UPGRAD_ING OF RAW MATERIALS ............

3. I. 1 Phenolic Novolac

A decision was made early in the program to develop a repro-

ducible analog of the single batch of commercial novolac used in the

:production of molded billets. This decision was not based on any

criticism of the commercial novolac which, as proved during char-

acterization_ is a pure and high quality product. The decision was

based primarily on the uncertainty of securing future batches with the

same properties. Therefore, a synthesis effort was carried out to

duplicate the commercial novolac within narrow limits. This was

followed by the production of several hundred pounds of the resin at a

local commercial resin plant under closely controlled conditions.

Synthesis Effort

The properties of phenolic novolacs are controlled primarily by

the ratio of the weight of phenol to the weight of 37% formaldehyde

Solution in the initial reaction mixture. All of commercial novolacs

are made in the range of 6.8 to 7.2 phenol/formaldehyde ratio. The

experimental approach to duplicating the commercial novolac was

therefore to produce two standard resins which would bracket the

average molecular weight range of the commercial resin. The prop-

erties of these resins were to be compared with the commercial

material and it would then be possible to zero-in on the commercial "

material. Provided pure reactants and normal reaction conditions

were used, a knowledge of the average molecular weight, and free

phenol content should be sufficient to empirically duplicate the com- .

mercial novolac.

The two standard novolacs were therefore synthesized using raw

materials of the same quality as used commercially. These materials

were designated LFN for the low (6.8) phenol/formaldehyde ratio and .....
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HFN for the high (7.2) phenol/formaldehyde ratio. The reaction

mixtures were as follows:

Phenol

Formalin (37%)

Oxalic Acid

42040 g. <

Low Factor Novolac

(LFN) F/P = 6.8

4000 g.

2720 g.

40 g.

Yield < 4400 g.

High Factor Novolac

(HFN) F/P - 7.2

4000 g.

288O g.

40 g.

4320 g. < Yield < 4440 g, ',_

The various laboratory preparations are described in Appendix VI.

Characterization of Laboratory Novolacs

Infrared Spectra

Infrared spectra of the LFN andHFN resins were compared with

that of the commercial novolac both with and without hexamethylene-

tetramine. (Figure 27). The spectra of the two Hughes novolacs were

found to be essentially identical both as to wavelength of the observed

absorption bands and as to their relative intensities. Differences had

been expected in the 9.5 - 10.0 micron region ofmethylol group

absorption and at 14.4 microns where absorption indicative of free ....

phenol occurs. Such differences were not found in the spectra of the

LFN-1 and HFN-1 novolacs. Also comparison of these spectra with

those of the commercial novolac (with and without hexa) indicated that

the commercial novolac had been approximated in composition and

resin advancement.
i

These results indicated that infrared spectral analysis was not a ....

satisfactory characterization method for differentiation of structural ....

and chemical characteristics of unfractionated phenol-formaldehyde .........

novolacs. For this reason, it was planned to employ a simple frac-

tionation technique with the novolacs and following this, to characterize ....

the several fractions as to number average molecular weight, Mn,

85



COMMERCIAL

50004000 3000 2500

I00

90

80

70

60

50

40

30

20

I0

0

2 3 4

PHENOLIC NOVOLAC WATER EXTRACTED

WAVENUMBER CM "1

2000 1500 H00 I_00 1200 II00 1000 900 800 700 650

5 6 7 8 9 I0 II 12 13 14 15

WAVELENGTH IN MICRONS

HFN-I PHENOLIC NOVOLAC

WAVENUMBER CM -I

2000 1500 1400 1300 1200 I100 IOOO 900 800 700 65050004000 5000 2500

I00

90

80

70

60

50

40

50

20

I0

0

2 3 4 5 6 '7 8 9 I0 II 12 13 14 15

_/AVE L ENG_H IN MIGL_QN$

COMMERCIAL PHENOLIC NOVOLAC WITH HEXA AND LFN-I WITH HEXA

WAVENUMBER CM -I

5000 4000 3000 2500 2000 1500 1400 1300 1200 II00 1000 900 800 700 650

2 5 4 5 C II 12 13 14 15

I00

90

80

70

60

50

40

50

20

I0

0

I00

9O

80

7O

6O

50

4O

30

20

I0

0

16

I00

9O

80

70

7 8 9 I0

WAVELENGTH IN MICRONS

6O

5O

40

3O

2O

I0

0

16

Figure 27. Typical infrared spectra of phenolic novolacs.

I00

90

80

7O

6O

50

4O

3O

20

tO

0

16

86



and absorption spectra. It was anticipated that this procedure would

prove an effective means of characterizing differences between high

and low factor novolacs.

Three molecular weight fractions were prepared from the washed

commercial novolac by progressive precipitation from acetone solu-

tion by addition of water. The IR spectra of the three fractions are

shown in Figure 28. The spectra of fractions of the HUghes n0v01acs-

were not prepared however because of time limitation and other

procedures proved to be more quantitative.

Molecular Weight Determination

The Rast method of molecular weight determination, based on

the depression of the freezing {melting) point of camphor, was studied

as a possible technique for determining the molecular weight of

phenolic novolacs. Although early tests were encouraging, in yielding

reasonable and reproducible values for the molecular weight of low

factor novolac-3 (680 and 018, in two consecutive runs), subsequent

tests withm-terphenyl, gave incongruous results. Because there was

insufficient time to perfect the techniques to the required level of

accuracy, this method was abandoned in favor of the boiling point

elevation method.

Preliminary ebullioscopic measurements were made employing

acetone as a solvent, Molecular weights in the range of 770 were

obtained for the high factor novolac, however this data was not

obtained at ideal conditions. The low K b value the relatively low

boiling point, and the high volatility of the acetone caused many

problems. Molecular weight determinations were continued using

dioxane as the solvent since it had less volatility, a higher K b and a

higher boiling point. The final procedure is described in Appendix III,

Item 3.

The results of the molecular weight determinations are sum-

marized in Table 4Z.
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HFN

LFN

Commercial novolac washed

and dried

Commercial novolac cor-

rected for loss of low molec _-
u!ar. Wt fractions and "

phenol

Numb e r

Ave rage
Molecular

Wt. at 0

Concentration "

794, 4

606.2

133714

800 approx.

Table 42. Summary of molecular weight
dete rminations.

Melting Point

i_ The melting point of Hughes novolacs and water extracted com-

mercial novolac were determined. Results shown in Table 43.

Gel Time

The gel time for LFN-3 and HFN-2 Novolacs was determined at

302°F after adding 9% by weight_of hexamethylene tetramine. The

results are shown in Table 44.

- Viscosity Measurements

Viscosity and Viscosity Indexmeasurements of the Hughes novo-

lacs confirmed that the HFN series'_of resins was virtually identical to

the commercial novolac. Solution viscosity measurements at several

concentrations in isopropyl alcohol produced almost identical results

..... for HFN and the commercial material. A plot of concentration against

the natural logarithm of the relative viscosity divided by the concen-

tration according to the Houwink and Claasens Relationship (Ref. 9)

revealed a striking similarity between the HFN and the commercial

novolacs (see Figure 29).

•i
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HFN-2.

Vacuum Dried 3 hours and Tumbled Before Testing:

Test No.

First Melting Point

Gel Point

Second Melting Point

1 2 3

89°C 89°C 89°C

87°C 87°C 87°C

93°C 93°C 93°C

LFN- 3

Same Conditioning as Above:

Fir st Melting Point

Gel Point

Second Melting Point

79°C 79°C 79°C

77°C 77°C 77°C

84°C 84°C 84°C

Commercial novolac water extracted

Same conditioning as above:

First Melting Point

Gel Point

Second Melting Point

114°C

'llZ°C

120°C

114°C 114°C

I12°C I12°C

120°C 119°C

Table 43. Melting points for HFN-Z, LFN-3 and water
extracted commercial novolac.

Production Batch of Hughes LFN

Based on the accumulated evidence it was decided that the HFN

resin was a very close approximation of the commercial novolac. A

contract was therefore let to a local resin manufacturer, for the pro-

duction of 800 pounds of Hughes •High Formaldehyde Factor {HEN)

novolac, Considerable care was taken by this company in cleaning

their stainless steel reaction kettle prior to synthesis of the first batch
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Dete rmination

LFN- 3

Time

Minutes & Seconds

HFN-2

Time

Minutes & Seconds

1 Min,

35 Sec.

1 Min,

50 Sec.

I Min.

30 Sec.

1 Min.

48 Sec.

3

1 Min.

3Z Sec.

1 Min.

51 Sec.

r _

0.08

0.07

0.06

Q05

0.04

o

OO3

O.02

o.OI

Table 44.

/

Gel time of HFN and LFN

phenolic novolac s.

J

WASHED COMMER_AL__5

0 0.5 1.0 1.5

CONCENTRATION g/lO0 ML OF SOLUTION

2.0

Figure Z9. Relative viscosity of novolacs
vs concentration.

2.5

.4

I----

L :'. --
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The first two batches of Z50 pounds •each were unsatisfactory,

Very short gel times without Hexa and high viscosities were obtained.

The material appeared to be a resole rather than a novolac. It was

decided therefore that a much higher formaldehyde to phenol ratio was

occurring than had been specified. At first it was believed that the

assay of the formaldehyde was low due to the presence of formic acid.

Analysis at Hughes however showed that the formic acid content was

very low. It was then decided to assay both the phenol and the formal=

dehyde used by Applied Plastics. The phenol proved to be very pure

but Applied's assay of the formaldehyde was low by 3 percent.

Subsequent batches of novolac using the revised assay figtlres

were of acceptable quality. A comparison of the properties of the

large batch of HFN with the commercial novolac is shown in Table 45.

HFN

Batch
Production

Melt Point Temp. °C 109

Gel Times Secs. at 78 hrs
300 ± Z°F

Viscosity Number

HFN
With
Hexa

131.2

2. I

Commercial
Novolac

(extracted)

114

Z hrs

Commercial

Novolac

With Hexa

130 Avg.

2.1-2.3

Table 45. Comparison of HFN production batch with
commercial novolac.

We were therefore satisfied that the HFN is a close approximation

of the commercial novolac.

The procedure for manufacturing the large batches of HHFN is

detailed in Appendix V., Of the 800 pounds of novolac produced to

specification 400 pounds were delivered to NASA Ames in the ungraded

condition (without H exa). Most of the remainder was ground to Z50

mesh with I-Iexa for use at Hughes, Twenty five pounds of the ground

resin with Hexa were delivered to NASA Langley.
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Ash Content of Hughes Novolac

Analysis of HFN and LFN laboratory batches showed a somewhat

higher ash content than the commercial novolac as is shown in Table 46.

Description Ash Content, Percent

HFN-1

LFN-1

H exe m ethyl -
enetetramine

0.070

0.076

0.0019

Table 46. Ash content of Hughes novolac.

Ash content of the phenol and formaldehyde used was found to be

extremely low. The constituents of the ash as measured semi-

quantitatively with a I. 5 meter emission spectograph having a disper-

sion of 7A/mm are shown in Table 47. The fairly high ash content in

the Hughes synthesized resins is typical of materials made in glass

vessels.

Ash contents determined on the HFN production batches also

showed inorganic impurities of the order of 0. 070%. In this case how-

ever the contaminants were high in iron and heavy metals, similar to

the impurities found in the commercial novolac. The constituents of

the ash were typical of resins made in stainless steel equipment and the

higher ash of the LFN compared to the commercial novolac is believed

to be due to small size of the batches. In small batches the area of the

reaction kettle wall exposed to corrosion is high compared to the volume

of mix and therefore more contaminants are absorbed than in large

batches.

Specifications

The specification for both the commercial novolac and the HFN

resin is contained in Appendix VII.
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Composition Per Cent

Element HFN- 1 LFN- 1 H examethyl-
enetetramine

Silicon

Antimony

Calcium

Chromium

Aluminum O.

Phosphorus O.

Boron O.

Iron O.

Magne slum 0.

Manganese 0.

Lead 0.

Nickel

Titanium

Copper

0. OO98

0.0017

0. 00062

0. 00020

00054

0091

000038

00046

00029

00017

00010

O. 00024

O. 00010

0.000037

0020Sodium 0.

O. 0152

O. 00076

O. 00099

0.00091

O. 0017

O. 012

O. 00023

O. 00043

O. 00046

O. 00065

0. OOO15

0. 00020

0. 00008

O. 000046

0.0013

Zinc

Z irconium

Cobalt

Strontium

Tin

Molybdenum

Potassium

0.00016

o.oooo6 

0. 00007

0. 000010

0. 000033

mD

0. 00025

0. 000017

0.000017

0.0011

0.0012

O. 0003

O. 0002

0.0001

O. 000005

O. 0001

0, 000006

0. 0002

0.00005

0.000004

0. 00001

0.00004

0.00002

0.000003

0.00001

0.000001

0.000002

0.000001

0. 000005

Table 47. Spectrographic analysis based on unignited weight.

3.1.2 Phenolic Microspheres

The data accumulated in characterizing the microspheres pointed ,

directly to means of upgrading the material. It had been found that the

microspheres as received contained small percentages of large agglom-

erates and fractured spheres. Also, it had been demonstrated that the
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large diameter spheres were most susceptible to damage from hydro-

static pressure. Therefore it was possible to obtaina more useful

grade of microspheres by flotation and pressurization by discarding

the material which sunk. All attempts to locate materials handling

equipment which would perform such an operation in bulk were unsuc-

cessful. It was therefore decided to eliminate the large agglomerates,

the large diameter microspheres, and the fractured spheres by simple

sieve fractionation. Upgraded microspheres were obtained by using

only that material which passed through a 50 mesh sieve and was

retained on a 230 mesh sieve.

3.1.3 Powdered Nylon 66

Upgrading of the powdered Nylon 66 was accomplished by changing

the particle size distribution. Instead of 80 mesh average material, the

Nylon 66 was ground to a mesh number particle size under liquid nitro-

gen by a local vendor. Only that material which passed a 120 mesh

sieve was used in the Hughes formulation.

3.2 MODIFICATION OF THE FORMULATION

Two conclusions on the formulation of the molded billet material

were drawn from the data collected during the characterization. First,

that the volume fraction of resin in the formulation was too low to com-

pletely wet and bind together the nylon particles and microspheres;

second, that the volume fraction of microspheres was too high and

mechanical crushing of them is inevitable in order to achieve the _ _

desired density of thirty five pounds per cubic foot.

Recognition of the problems involved in the formulation would

normally imply than an empirical approach be taken to produce a more

balanced formulation. A series of formulations would be made up with

increased resin content and decreased mlcrosphere content. Each of

these formulations would be molded with the necessary changes in mold-

ing procedure, and thoroughly tested. The formulation which exhibited

the best properties would thenbe selected. An empirical approach of - '

this type would have been inordinately expensive and time consuming.
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_A mathematical approach was therefore taken to the problem.

Ideally the volume fractions in th.e formulation should add up to unity.

For a unit volume of material

Wt. of Resin

Cured Density of Resin

Wt. of Composite
Density of Composite

Wt. of Nylon+
Density of Nylon

I

+

Wt. of Micro-

spheres
Density of Micro-
spheres

The idealrelationship assumes that no volume change occurs in

the microspheres during processing, that ideal packing of the ingre-

dients is obtained, and that no porosity occurs other than that deliber-

ately added by the hollow microspheres. Also, it assumes that the : .

resin flows, wets, fills all the interstices among the inert ingredients.

The concept is shown schematically in Figure 30. It should be noted

that to reduce the Langley formulation to unit size the microspheres

must be crushed, and that even so, insufficient resin is present to fill

all the interstices.

are fixed quantities,

be fruitful.

Since both the nylon material and the final density

it was decided that a mathematical approach would

Mathematical Analysis of Volume Fraction Relationships

For composites made up of phenolic (novolac) resin, phenolic

microspheres, and nylon there are only four variables to consider if

the nylon content is kept constant at 40 percent by weight. (Specifying

a constant nylon content implies that density control is accomplished

by interchange of phenolic resin binder with phenolic microsphere

filler. )

I.

2.

3.

4.

The

to be such

tionl then

These four variables are:

Filler packing fraction.

Novolac weight fraction.

Iviicrospher es density.

'_ N /i' dFraction of microspheres crushed, t: :'4 slz-_ cx, fj_:e.

novolac is the binder and if processing conditions areassumed

that melting and flow of the resin can occur before its gela-

there are two cases to consider. The first case is that in
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which the material is so short of resin that regardless of the latter's

fluidity and regardless of the pressure applied it cannot flow into and

occupy all of the continuous void volume. Thus, there are always filler

particles in contact with one another, and some continuous voids are

present. In the second case, none of the filler particles are in contact,

all being suspended in a continuous resin matrix.

Let

5.

F.
1

P

1-P

= density of ingredient, i

= weight fraction of i

= packing fraction of filler

= volume fraction of continuous voids and resin

subscripts: i=l, Z, 3, m

1 = phenolic resin

Z = microspheres

3 = nylon

m - mixture

/ ".: : 6 F z 6 F 3
By definition: P = m + m We assume

52 53 •

F 3 = 0.4, F z = 0.6- x, F 1 = x

x = variable resin weight fraction

Case 1

x5 m < 61 (I - P)

Xc, the critical value of x, at which we cease to have continuous

voids and pass over to the second case is found from

XcJm = 61 (l-P)

or

p 61 (I - P)
6 ! _.
m 0.6-x x

c + 0.__! c
5z 53

98



Thus composite densities can be calculated from

Case 1

P
= X < X

6m 0.6 x + __0"4 ' c

62 63

Case Z

1
= X > X6m x 0.6 - x 0.4 ' C

-- + + --
61 62 63

It was decided to use the above relationships to estimate com-

posite densities at two different filler packing fractions, viz. 0.74 and

0.50. The first corresponds to the theoretical closes packing of

uniform spheres. The second value approximates the packing fraction

of vibrated phenolic molding materials (commercial general purpose)

before molding. Thus, the first.represents a probably unattainable

upper limit while the second is a realistic and attainable goal.

Assuming no crushing of microspheres (of density 16.5 Ibs/cu ft)

the effect of novolac fraction upon the cured material density is shown

in Figure 31. The formulations worthy of experimental investigations

can be approximated from this figure.

Actually the density of microspheres is not constant as implied

by Figure 31. Allowance for the variability of this factor is made in i

Figure 3Z. This figure shows the formulations potentially capable of

yielding the presently desired cured material density.

Figure 33 shows the formulation requirements for different cured

material densities.

Figure 34 is the same as Figure 33 except that allowance is made

for the crushing of microspheres.

R evised Formulation

On the basis of the relationships shown in Figures 31 through 34,

it was possible, with minor assumptions, to select a formulation with

the desired properties. Also, it was possible to adjust a given :

k
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formulation for var_iation in the true density of each batch of micro-

spheres. The formulation selected was designated Hughes LAF #I.

The LAF #I formulation is contrasted with:the Langley Molded Billet

Formulation in Table 48.

F

Item

Resin

Hughes LAF #I Langley

Amount Amount
Description .Description

by Weight by Weight .

37% Z5%

Pneumagen 40%

Void 23%
Producers

Table 48_

Hughes HFN
Novotac

Commercial

Phenolic

Powdered

Nylon 66

(-IZ0 Mesh)

Upgraded
Phenolic

Microspheres
(-50 :÷ 230
Mesh)

Novolac

40°]o

35%

Powde red "Nylon
66 (80 Mesh

Average)

Phenolic Micro-

spheres - as
received

Formulations for Hughes LAF #1 and
Langley molded billets

3.3 PROCESS MODIFICATION

Two major drawbacks were observed in receiving the Langley

Process. The application of an excessive and positive pressure to the

formulation during molding was part of the reason for damage to the

microspheres. Also, the heating of the formulation during cure solely

by heat transfer from the mold resulted in very high temperature dif-

ferentials within the billet and an extremely long cure cycle. The tem-

perature differential problem was magnified by the fact that the uncured

formulation is itself an excellent thermal insulator.

All of these conditions could be alleviated by two changes in the

molding. These changes were 1) molding to size, and Z) dielectrically

preheating. If the Scout Nosecap could be molded to size instead of

molding a massive billet the temperature differential problem would be

reduced because a much smaller volume of material would be cured at
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one time. Also, a properly designed mold would have built in lands to

absorb the press load once the mold had been closed. The mold would

be close to a fixed volume. Provided the correct amount of material to

achieve the desired density had been charged into the mold, the material

would only be subjected to severe pressure during mold closing. Exact

density control of the Nosecap would be achieved because the charge

would be precisely weighed and the molded volume would be constant.

Dielectric pre-heating of the mold charge was considered to be

desirable for several reasons. The elevated temperature produced by

the preheating would be uniform throughout the mold charge, thus

reducing the heat transfer problem. A correctly preheated charge

would be semi-fluid and would therefore have much greater heat trans-

fer capability than the cold powdered charge used inthe Langley process.

In addition, the fluid resin phase produced by the preheating would tend

to protect the microspheres from damage during mold closing. Finally,

the preheated material would be placed directly in a hot mold thereby

eliminating the mold heat-up period and reducing the cure time.

3.3.1 Preliminary Molding Investigations ...............

Several preliminary questions had to be answered before a

decision would be made to change the process. Some of these questions

were, 1) could the formulation be uniformly dielectrically preheated

without overheating, charring, and too rapid cure? 2) Would a pre-

heated charge molded in a hot fixed cavity volume mold be uniform in

density? 3) Would this procedure reduce damage to the microspheres?

and 4) Would a degree of flow occur during molding so that a shaped

molding of uniform density would be achieved? Several small molding

investigations were therefore initiated.

Three discs, nominally one inch thick and 3..1/2 inches in diam-

eter, were molded from the following materials using the NASA

Langley formulation proportions.

• Commercial Novolac from Batch No. C10ZOA

• 80 mesh Nylon 66, per NASA Specification

• Phenolic microspheres from Lot No. C505

k.
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The first disc was molded using an approximation of the NASA

molding cycle. The second and third discs were molded by placing a

dielectrically preheated charge directly into a 300°F mold and molding

for 9 hours. The second disc was preheated for one minute at 200 ma

while the third disc was preheated for 1.5 minutes at Z00 ma.

The density variations through the three discs was studied by

machining the ends and sides in a series of operations, weighing

between each machining operation.

The density of the removed material as well as that remaining

was calculated from the data. The results indicate the second disc

molded from the dielectrically preheated material to be slightly, more

uniform than the disc molded using NASA conditions. The third disc

which was preheated as much as possible was about as variable in

density as the NASA disc, The results were sufficiently encouraging

to support the belief that dielectric preheating and straight forward

molding in a heated mold would produce uniform material. The results

are tabulated in Table 49.

Additional molding studies were carried out using a 4 inch diam-

eter mold fitted with vacuum and adjusted to provide a 10 000 inch

deep cavity when closed to lands. Material was mixed from supplies

of the commercial materials at Hughes using the Langley formulation.

Two molding cycles were used, one approximating the Langley molding

technique, and one using dielectric preheating and direct molding at

cure temperature.

Preheated Molding Procedure

Dielectrically preheat charge, load directly in mold heated to

300 ° ±5°F. Level charge and place two bleeder plies of glass cloth

(. 020 inch thick total) on top of charge. Close mold rapidly with vacuum

to lands using minimum press load. Cure 45 minutes at 300OF. Eject

part hot.
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Disc

Number:

I.

{NASA:

Molding
Cycle)

.

(I.0 min.

Diel.

Preheat)

.

(I. 5 min.
Diel.

Preheat)

Cut

Num-

ber

{Start)!
1
2

3

4

5

6

7

8

9
I0

II
12

(Start)
1
2

3

4

5

6

7

8

9
I0

ii

IZ

[Start)
1
2
3
4
5
6

7
8
9

10
11
12

Dia.

In.

3.475

3.225

3.225

2:975

2.975

2. 725

2. 725

2.475

2.475

2.227

2.227

1.976
1.976

3. 483

3.236

3.236

2. 986

2. 986
2. 734

2. 734

2.485

2.485

2.235

Thick-

ness

In.

O. 993
O. 993
O. 870
O. 870
O. 746
O. 746
0.618
O. 618

0.495

O.495

O. 372

0.372

O. 248

9.418

8.112

7.107

6. O48

5.186

4.351

3. 604

2.973

2.381

I. 928

I.449

1. 141

O. 760

Wt.

Gm.

9.4.00
81.11

70.80
60.51

51.58

43.50

35.80

29.63

23.80

19.30

14.32

11.31

7.42

Density of
R e maining

Mat'l,
lb/cu ft

.38
38
37

O. 993

0.993

0.868

O. 868

O. 744

O. 744

O. 618

0.618

O.492

0.492

9.461

8. 167

7.139
6. 078

5.210

4. 368

3. 628

2.997
2.386

I. 930

92.39

79.89

69.63

59.43

50.63

42.71

35.39

29.29

23.43

19.03

.00

.07

.93

38. O9
37.87

38.06

37.82

37.94

38.05

38. I0

37.62

37.74

37.16

37.
37.

37.
37.
37.

37.
37.
37.
37.
37.

18
25

13
23

O0
23

14
20

38
53

Density ofl
Mat ' 1

removedj

Ib/cu ft

m

37.57
39.06
36.99
39.44
36.84
39.27
37.23
37.51

3.7.79
39.57
37.17
38.94

m

36.77

38. O0

36.62

38.58

35.80

37.67

36.71

36.51

36.74
2.235

I. 985

I. 985

3.483

3.236

3.236

2. 985

2.985

2. 734

2.734

2.485

2.485
2.236

2.236

1.985

I. 985

0.369
O. 369
O. 240

O. 992

O. 992

O. 869

O. 869

O. 745

O. 745

O. 622

O. 622

0.495
0.495

0.372

0.372

O. 246

i.448

I. 142

O. 743

9. 452

8.159

7. 147

6.081

5.214

4. 374

3. 652

3.017

2.401

I.944
1.461

1.151

0.761

14.16

11.21
7.21

93.21
80.30

37.23

37.36

36.97

37.55

37.47

38.42

36.74

38.14

38.01
70.50 37

60.11 37

51.57 37

43.49 37

36.38 37

30.22 38

24.19 38
19.69 38

14.72 38

11.70

7.67

.55

.63

.66

.86

.93

.14

.36

.56

.37
38.69
38.35

36.88

37.12

37.47

36.62

37.49

36.94
37.27

36.86

39.18

37.15

39.35

Table 49. Density of molded discs.
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Temperature Cycled Molding Procedure

Place cold charge directly in mold at 215 ° +. 005OF, level and

add bleeder plies. Close mold with minimum pressure load to loads.

Maintain Z15°F temperature for 15 minutes. Raise mold temperature

to 300 ° ±5°F in 45 minutes. Cure for 45 minutes at 300OF. Cool mold

to Z00°F before removing part {approximately 30 minutes).

Following molding and cooling in a desiccator the parts were

machined on the top surface, and measured. Results are shown in

Table 50.

Molding
Procedure

A

A

A

A

B

B

B

B

Charge Wt

gm

112

120

130

140

112

120

130

140

Av. Dia
Inches

3.9688

3.9691

3.9690

3.9685

3.9743

3.9738

3.9708

3.9705

Av. Height'_
Inches

.9743

.9610

.9616

.9702

.9510

.9658

.9685

.9645

Weight
gm

106.63

112.69

114.14

134.70

104.36

114.28

125.51

133.72

Depsity
lbs/cu ft

33.70

36.10

36.54

42.75

33.70

36.35

39.84

42.65

• This dimension dependent on machining variables

Table 50. Density of molded discs.

Some difficulties were encountered in establishing optimum preheat

and loading the preheated charge in the mold without loss.

The investigation of the effect of dielectric preheating and the vari-

ation of density by changing mold charge weight was continued. The 4

inch dia x 1 inch disks were subjected to postcure in a helium atmos-i

phere. The postcure schedule was as follows--Raise temperature rate

of 5°F per hr from R.T. to 300°F, hold temperature at 300°F for 22

hrs, cool to R.T. in oven before removing parts.

The changes in density and volume of the disks after postcure are

listed in Table 51.

105



Prior to Postcure After Postcure
Mold

Specimen Charge Density Din. Height Density Din. Height
Number gm lbs/ft _ Inches Inches lbs/ft 3 Inches Inches

Langley Process

A1 9O

AZ 100

A3 118

A4 125

26.9

29.9

37.0

38.1

Hughes

3. 976

3. 976

3. 975

3. 968

.958

.950

.950

•95Z

27.0

30.0

37.1

38.0

3.970

3.969

3.960

3.943

Process (Preheated)

B1 90

B2 I00

B3 ii0

B4 115

B5 120

B6 130

B7 140

Table 51.

27.1

30.4

33.6

35.4

35.9

40.1

43.2

3.970

3.970

3. 970

3.965

3.965

3. 962

3.960

.957

.966

.964

.962

.962

.961

.962

27.1

30.1

33.5

35.1

35.7

39.9

4Z. 9

3. 964

3.960

3. 952

3. 946

3. 947

3. 948

3.950

Effect of postcure on density and dimensions of
4 inch dia by 1 inch disks.

.959

.950

.940

.949

.958

.964

.961

.959

.969

.959

.962

A cursory examination of this data shows thata slight decrease in

density occurs during postcure and that this effect is greater as the den-

sity increases. Also, additional shrinkage occurs during postcure and

that the shrinkage in the diameter is more pronounced than in the height.

This lower shrinkage in the height direction is to be expected because this

is the direction of pressing. In almost all plastics a certain amount of

unmolding occurs in the pressing direction which offsets the shrinkage.

The work on molding 4" diameter by 1" high disks with and without

dielectric preheating was repeated with m0re accuracy. A large range of

densitie s was obtained by varying the mold charge into the fixed volume of

the mold. As anticipated no major diffe rence in den sity was obtained by the

methodofprocessing. All Of the billets molded were uniform in appear-

ance and contained no visible faults. The results are plotted in Figure 35.
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_;'....The primary significance of this data was that a simple molding

procedure utilizing dielectric preheating and a total of 45 minutes

molding time produce the same densities of molded material as a com-

plicated heating and cooling procedure requiring over two hours mold-

ing time.

B.B.Z The Scout Nosecap Compression Mold

The preliminary molding investigations indicated that dielectric

pre-heating and molding to size were feasible. A mold was therefore

designed and fabricated (see Figure 36).

The mold was steam heated and had provision for evacuating air

from the cavity. The cavity and force of the mold were made from

pre-hardened tool steel, polished, and hard chrome plated.

45

40

30

25
8O

tn

>- 35
h-

Z
LI.I
P,

+ PREHEATED

0 SIMULATED LANGLEY
MOLDING PROCESS

• .I-

/
I/
ib

90 I00 I10 120 130

MOLD CHARGE WEIGHT, GMS

140 150

(- Figure 35. Mold charge versus molded density.
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The large loading chamber and steam chamber were designed to

be made from inexpensive steel tubing. Thermocouples were included

in the mold but no pressure transducers because it was doubtful if the

readings are meaningful.

The mold was designed to mold the nosecap directly to size using

a dielectrically pre-heated charge. The weight of the charge was to be

adjusted to completely fill the cavity with a very slight excess for

flash. Since the mold closed to lands, pressure on the molding would

only be a variable during the closing cycle or if an excess charge is

used. It was planned to mold the cap without temperature cycling and

to eject the molding hot. Shrinkage factors were placed on the.mold

dimensions as established from smaller moldings.

3.3.3 Preliminary Nosecap Molding

The Scout Nosecap mold was proved without difficulty. No trouble

was experienced in mechanical operation, heating, and application of

vacuum. Dimensions of the initial moldings appeared to be satisfactory.

Several parts were molded from general purpose phenolic in order to

break in the mold.

Nosecaps were then molded using the Langley formulation made

from as received raw materials. No attempt was made to control

moisture content and to assure Optimum mixing of the formulation. By

using two 4 KW dielectric pre-heaters and dividing the mold charges,

several parts were made. These parts had good appearance and were

of nominal 35 lbs/ft 3 density. However it was obvious that dielectric

pre-heating capacity was marginal since several minutes were required

to raise the temperature of the mold charge. Optimum pre-heat should v :

have taken les s than 60 seconds because of the short gel time of the resin.

A batch of Langley formulation was then prepared from pre-dried

rnaterials. Great care was taken to uniformly and intimately mix the

constituents. Attempts to mold the batch were unsuccessful because

of pre-heating difficulties. Parts of the mold charge were overheated

and other portions were too cold. The moldings showed charred areas

and a large variation in density. The formulation was then exposed to
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humidity in order to increase flow and dielectric loss (and thus accel- .......

erate pre-heating) but unsatisfactory moldings were still obtained• It

was therefore decided to rent a dielectric pre-heater of 12 KW capac-

ity capable of pre-heating the entire mold charge in approximately 30

seconds.

In order to determine whether there was any major difference in

physical structure between the Langley Billet material, gas transmis-

sion tests were performed on 3" diameter disks cut from the first

molded nose caps. The test was performed by pulling a vacuum on one .....

side of the disk and measuring the air flow through the disk with a gas

burrette, l_esults are shown in Table 52.

These results showed that a significant change in physical struc-

ture had been achieved by the Hughes Molding Process and a formal ".......

molding study was therefore initiated•

Material

Langley
Billet #2

Molded Nosecap
Langley
Formulation

Density
Lbs/Ft 3

33.4

37.5

Orifice

Size

Dia-

inches

2. 750

0. 750

0:075

2. 750

2. 750

Disk

Thick-

ness

Inch es

•250

.250

•250

.350

• 190

Air Flow

Vol, ccs Time, Mins.

Too large

Too large

Too large

0

I

2

3

4

5

6

to measure

to measure

to measure

280

15

25

35

46

58

73

Table 52. Gas transmission of preliminary molded nosecaps.
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3.3,4 The Moldin8 Program

The first experiments on direct molding of nosecaps were con-

ducted on the standard Langley formulation. Due to the limitations of

time and material it was not possible to completely optimize the proc-

ess. However, it was attempted to bring the density variation within

± 5°/0 of average.

It was found that preheated material could be adequately cured in

the mold with a cure time of 90 minutes at 275°F. No blistering or

evidence of undercure was observed with these curing parameters.

Cure was completed by postcuring to 350 ° ± 10°F for 6 hours in an

argon atmosphere.

The most critical parameter in controlling density variations

was. found to be the size and shape of the preform. Simple disk shaped

preforms were found to give high density in the center of the molding.

Five formulations were selected for the molding of Nosecaps and

delivery to various agencies for evaluation as shown in Table 53.

The five formulations were designed to provide specimens for

test which would represent the difference between the Langley and LAF

#1 formulations with and without upgraded nylon and microspheres.

The Formulation Number 5 represented all of the Hughes innovations

Including the Hughes process, upgraded nylon and microspheres, and

the HFN phenolic novolac. The primary effort was expended on For-

mulation Number 5. The experimental plan for the molding program

is shown in Appendix VI.

ID

Formulation No.

and Description

Hughes Molding Process

Langley Formulation

Commercial Resin

Ungraded Materials

Z5% Commercial Resin

40% Nylon

35% Microspheres

Ame s Langley

Z 1

Stanford

Research

Institute

Langley

(Scout Proj.

Offic e )

3 Table 53, Nosecap formulation and deliveries,

• k.
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Formulation No.

and De sc ription

Z. Hughes Molding Process

Hughes Formulation

Commercial Resin

Ungraded Materials

37% Commercial Resin

40% Nylon

23% Microspheres

3. Hughes Molding Process

Langley Formulation

Commercial Re sin

Upgraded Nylon (-lZ0
mesh)

Upgraded Microspheres

25% Commercial Resin

40% Nylon

35% Microspheres

4. Hughes Molding Process

Hughes Formulation

Commercial Resin

Upgraded Nylon (-120
me sh)

Upgraded Microspheres

37% Commercial Resin

40%o Nylon

23% Microspheres

5. Hughes Molding Process

Hughe s Formulation

New Resin

Upgraded Materials

37% HFN Resin

40% Nylon

23% Microspheres

Table 53 (continued).

Ames Langley

2 1

Z

Z

Stanford

Research
Institute

5

Langley
(Scout Proj.

Office )

Nosecap formulation and deliveries.

L .
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= Drying of Materials

Low temperature drying of Nylon, microspheres, and novolac,

was investigated. The effect of removing moisture by drying for 8

hours at 120°F was found to stiffen and decrease the flow of the mold-

ing formulation to a noticeable degree. It was therefore decided to

adjust the formulation to account for the volatile materials and to use

undried materials.

Formulation of all batches was carried out as described in the

Molding Program. Sieved Microspheres were used in the "upgraded"

formulations. Undried raw materials were used with each formulation

corrected for moisture content of the ingredients. It was also found

that greater homogeneity was achieved when the formulation for each

molding was tumbled for ten minutes immediately before molding and

then passed through a 50 mesh sieve. This treatment eliminated any

tendency for the ingredients to segregate and agglomerate. The -120

mesh Nylon had a strong tendency to do this. The barrel tumbler

provided adequate mixing for batches as large as 10,000 gm. The

formulation was not damaged by tumbling for long periods (up to 16

hours) since the mixing action was gentle.

Preformin_ and Preheating"

During the first attempts to mold the Langley Formulation it was

recognized that a simple disk shaped preform of even thickness would

not produce a nose cap of even density. The formulations compress in

the direction of pressing but do not transmit the pressure laterally to

a large extent. Therefore only a small amount of lateral flow occurs

in the mold. The problem was complicated by the fact that a large

portion of the material in the nose cap was at the edge and the material

cannot be expected to flow from the center of uniformly thick preforms

to fill out the edges.

The first moldings therefore made with a uniformly thick preform

were therefore dense in the center compared to the edge. Variation of

density from 40-45 lb/ft 3 in the frontal area of the cone to 23.28 ibs/ft 3

in the skirt was found as anticipated.

I13



A preform container was therefore constructed which permitted

a concentration of material in the edge rather than the center of the

preform. The preform mold was vacuum formed from 1/1b inch thick

polypropylene sheet to form a low loss container which did not inter-

fere with preheating. The cup shaped preform (Figure 37) was used in

the inverted position in the dielectric preheater. After preheating the

preheated formulation readily separated from the preform container

and retained its shape while being turned over and placed in the

compression mold.

Although the cup shaped preform permitted the dielectric pre-

heating of the entire mold charge in one operation it had two disadvan-

tages. First the dimensionA (Figure 37) had to be varied according

to the bulk factor of each formulation in order to obtain the correct

proportions of material in the edge and center of the molding. Second,

the difference in thickness of the center and edge of preform prevented

uniform preheating. In order to overcome this problem two preforms,

a disk and a ring, were made. (Figure 38). These would be uniformly

loaded and the relative amount of material in each preform could be

adjusted to give precise density control in the finished part. The pre-

forms could each be separately preheated to optimum condition and

assembled for placement into the mold. No evidence of an internal

weld at the preform juncture couid be found in the finished moldings

provided preheating conditions were correct. The juncture between

the preforms could be discerned on the interior surface of the moldings

but was evidently only a surface effect and should not affect the per-

formance of the part. The two-preform technique was therefore :

adopted for all of the Formulation 5 (Hughes Formulation, HFN Resin,

Upgraded Nylon and Microspheres) nosecaps.

Moldin s to Size•

The compression molding of properly preheated preforms proved

to be straightforward. Preheating conditions were generally 35-60

seconds with a final plate amperage reading of 1.2 amps. The preform

or preforms were removed from the preform containers and transferred
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PREFORM
CONTAINER NOT TO SCALE FORMULATION + ....

Figure 37. Cup shaped preform container.

to the hot mold in 20-30 seconds. The mold was closed slowly (approx.,

50 seconds) to full pressure and the parts cured for 90 minutes at 275

± 5°F and removed hot. The total press cycle per molding was 100

minutes including mold preparation and cleanup. No problems were

encountered in postcure.

Overall density control of the moldings was excellent. A standard

mold charge, based on the volume of the molding0 of 1785 gmwas used.

: Molded parts varied from 1735 to 1765 gm. After postcure the parts

ranged from 1700-1730 gm. The calculated weight of the parts to

achieve 35 lbs/ft 3 was 1710 gm.

The variation of density within the nose caps was not controlled.

to optimum because of the limited time and material. The process,

however, especially the two preform method was amenable to very close

control and adjustment. Density control close to± 5% of 35 lbs/ft 3 was ......

achieved. Slight adjustment of the weight and shape of the preforms

will reduce this variation to possibly 35 ± 0.5 lb/ft 3 throughout the nose

cap.
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_ de----- RING PREFORM

/_/_ CONTAINER

f Jll/i I_

FORMULATION _'_

///////

Y////_
/I

Z/

/I

_///,

NOT TO SCALE

Figure 38. Ring and disc shaped preform container.

The molding conditions used for each formulation are listed in

Table 54.

Density Variations

The sampling technique and variation of density throughout the

molded caps is shown in Figures-39 and 40. A .750 dia x 1. 132 long

cylindrical density specimen was taken from each of the five radial

stations as shown. In general a high density area was found at the edge

or transition area of the caps. However, it must be reiterated that the

process was amenable to refinement and the minor changes in preform

weight and shape can bring the density within finer tolerances. Typical

density versus location plots are shown in Figure 40 for individual nose

caps of each of the five formulations molded. The density specimens

were taken immediately after molding. The postcured density of the

specimens was 2-3 percent lower than the figures shown.
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STAT tON STAT ION

NO. I -''''4m' NO. 2

-- --2 -- _ ___ STATION

__ ;t HO 3

STATION

4

- I/2

DENSITY SPFCIMgNS 0.7S0 DIA •

ALL DIMENSIONS 1.132 HIGH CYLINDERS

IN INCHES

Figure 39. Location of density specimens in molded Scout nosecaps.

In addition to the Capability of molding large shapes bythe use of

multiple preforms, the process also offers another interesting poten-

tial. Nosecaps could be molded in which density variation was delib-

erately built in. High density material could be produced in critical

high shear and turbulent areas to insure highest performance and

lowest weight, modified formulations could be used in the various pre-

forms, that is, areas of planned high density would utilize higher resin

content and lower microsphere content than low density areas. Such

formulations can readily be formulated using the principles already

developed in this program.
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Figure 40. Density vs location - molded nosecaps.
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3. 3. 5 Summary of the Final Production Process

The final formulation for 35-1b/ft 3 density material developed by

Hughes is as follows:

37 percent by weight of Hughes HFN Phenolic Novolac

(a highly characterized and pure analog of the commercial

novalac)

23 percent by weight of graded Phenolic Microspheres.

(That fraction passed by a 50 mesh sieve arid retained on

a 230 mesh sieve. )

40 percent by weight of Nylon 66 (-120 mesh)

The Hughes formulation was prepared by first determining the

moisture content of the materials'. Unless the moisture content was

excessive, the materials were not dried because the moisture increases

the flow and wetting ability of the resin. The correct proportions of the

ingredients, adjusted for moisture content, were then carefully weighed

and dry blended in a similar manner to the Langley process.

To mold the Scout Nosecap to size two preforms were required.

The nose portion of the cap was obtained by using an essentially disk

shaped preform and the skirt of the cap was formed from a hollow

cylindrically shaped preform. The preforms were produced by weigh-

ing a predetermined amount of blended formulation into vacuum formed

polypropylene preform molds, Figures 41 and 42. The charge in each

preform mold was then carefully smoothed on the surface to assure

uniform distribution (Figure 43). The preforms were then dielectri-

cally preheated for approximately 35 seconds in a lZ KW dieelectric

preheater (Figures 44 and 45). The ring preform was then placed on

the disk preform (Figure 46) and placed in the hot compression mold.

The mold (Figure 47) was of the landed type and therefore always closes

to a fixed cavity volume. Provided the correct weight of formulation

was placed in the mold, the molding was always of the correct average

density.

The nosecap was cured in the compression mold for 90 minutes at

275°F ± 5°F and then removed hot by using a suction cup (Figure 48).

The part was then placed on a chill fixture (Figure 49) and insulated
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Figure  41. Ring and disk preform 
molds made of vacuum 
formed polypropylene 
sheet. 

F igure  4 3 .  Smoothing of preform 
charge to a s su re  uni- 
fo rm distribution of 
mater ia l .  

i 

Figure 42. Weighing of Hughes formu- 
lation into ring preform 
mold. 

Figure 44. Dielectric preheating 
of preform.  
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Figure  45. Preheated preforms,  
removed f rom preform 
molds pr ior  to loading 
in compression mold. 

F igure  47. Closed compression 
mold for  molding Scout 
nosecap to size.  

Figure 46. Assembly of preheated 
preforms for loading in 
mold. 

Figure 48. Removal of molded nose- 
cap f rom compression 
mold. 
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I 

Figure 49. Molded nosecap and shrink- 
postcur e fixture s. 

Figure 50. Postcured nosecaps 
mounted in postcure 
fixture. 
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with glass cloth to allow it to cooi slowly. The total molding cycle for

molding nose caps was I00 minutes.

The molded caps were post-cured while still on their shrink fix-

tures on the rack shown in Figure 50. The rack was placed in a sealed

steel container. A continuous flow of argon gas was maintained through

the post-cure canister during post-cure ina hot air circulating oven.

The post-cure consists of a 24 hour cycle in which the temperature was

raised to 350 ° + 10°F in i0 hours, maintained at 350°F for 4 hours, and

cooled for 4 hours.

3.4 CHARACTERIZATION OF MOLDED NOSECAPS

Compression strength, porosity (Hughes Method) and gas trans-

mission tests were performed on the molded]nosecaps. It should be

noted that the compression strength of all nosecaps made, including

those based on the Langley formulation was markedly increased by the

Hughes molding process. Results are shown in Table 55.

Gas Transmission Test

In order to obtain a reproducible gas transmission test and to

reduce the overriding effect of small flaws in the samples, transmis-

sion was measured by passing air at one atmosphere lengthwise through

a .750 dia x I. 132 long cylindrical specimen. The results showed that

this was a good control test for the Hughes product but that the Langley

material was still so porous that gas transmission was limited by the

flow capacity of the apparatus. (See Table 56.)

Porosity Tests

The data on interconnected and total porosity is too voluminous to

present here. In summary however, the final Hughes Nosecaps showed

significantly reduced continuous porosity compared to the Langley

Material. (See Table 57.)
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Description

Langley Billets

Billet No. 2

Billet No. g
Billet No. lZ

No,

S ample s

57

57
18

Average
Compression
Strength PSI

2435
2575
2820

Standard
Deviation

+ 253
± 318
± 173

Average Langley Moldings 26 10

Hushes Molded Nose Caps

Part No. 1L14, Formulation #1 (Langley
Formulation un-graded raw materials)

Part No. 1H13, Formulation #2 (Hughes
Formulation ungraded raw materials)

Part No. 2L5 Formulation #3 (Langley
Formulation ungraded raw materials)

Part No. 2H-I, Formulation #4 (Hughes
Formulation upgraded raw material)

Part No. 3H-41, Formulation #5 (Hughes
Formulation, upgraded raw materials,
HFN resin)

Part No. 3H-44A

Part No. 3H-46

Part No. 3H-49

IZ

5

5

5

10

3361

3957

4128

5107.

3795

4460

3773

3932

4870

± 710

75s

± 375

± 560

725

475

± 560

± 835

± 1460Part No. 3H-50

Average of Formulation #5 Moldings 4166

*These specimens _veraged 38.02 Ibs/ft3 density which probably accounts for the high
compressive strength.

Table 55. Compressive strength of molded nosecaps.

The porosity as measured by Aminco porosimeter confirmed the

above data. Specimen taken from the Langley Billets were compared

with the Hughes LAF nosecap material• The volume percent of

mercury penetration as various pressures are listed in Table 58.
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Sample

#3H-50 Formulation #5 (Hughes,

Upgraded, LFN Resin)

Position # 1

Position #5

Position #2B

Position #2C

Position #ZD

Langley Billet #8

Specimen 1

Specimen 2

Specimen 3

•Transmission limited by size of orifice

Volume of Air Transmitted

at Atmospheric Pressure

Time -Minutes

2
30

Z

5

i0

15

30

Z

5

i0

15
Z0

Z

5

i0

15

40

60

95

2

5

I0

15

40

43 Seconds
44 Seconds
44 Seconds

Vol in ml

0.0
0.0

0.6
1.3

2.9

5.4
II.0

4.0

15.3

37.0

55.1

75.2

0.0

0.3

0.9
1.3

6.0

9.0
13.0

Z.6

5.2

II.0

17.3

64.6

90.0*
90.0
91.0

Table 56. Gas transmission of molded nosecaps.
......................
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Langley

Hughes (upgraded
LFN Resin)

i

Total Voids as % of
Total Sample Volume

54% Average

52% Average

Volume % of Total Voids
Which is Continuous

(interconnected)

68-70%

15.-20%

Table 57. Porosity as measured by epoxide
impregnation.

Hg Volume Penetration, %

Pressure,
psi

15

30

45

60

3O0

Langley
Billet

1.7

24. 1

Z8.3

30.1

33.9

Hughes LAF
Formulation

2.8

12.1

14.0

14.7

15.8

Table 58. Porosity-Determination Aminco-Winslow porosimeter.

From the data it is apparent that the continuous voids occupy a

lower percentage of the total volume and the discrete voids have a

larger volume in the Hughes formulation. Figures 51 and 52 show the

difference in porosity of the two materials.

Tensile Tests

The tensile strength of the Formulation Number 5 nosecap mate-

rial was measured on the dogbone specimen described previously in the

Langley billet characterization. The results are shown in Table 59.

127

°.



0.20

0.16

U

0.12

I,-

"_ o.o8
Q.

0.04

ODO
I

I00

Ill I I I I i

f
f

/

D-PORE DIAMETER(MICRONS}

IO LO O.10

IIII I I I I IIII I I I I IIIII I I I

..i.

/
ioo _,o00

P,ABSOLUTE PRESSURE. PSi

J
I I 1 I Illi

H) IODO0

r'--

OOIO GO01

IIIII I I 1

I !1 I I I III

IO0 000

0201

0.16

U
U

0.12

i-

o.oe

0.04

0.00
I

I00

ill I I I I I

Figure 51. Aminco-Winslow porosimeter determination
Langley billets.

D,PORE DIAMETER (MICRONS)

I0 i.O OJO O.OlO

/
J

I I I I :,'_"i I I I I IIII

IO I00

/
J

I | i i I III

K)O0

P'ABSOLUTE PRESSURE, PSI

I i I i i iii i

e_

onoI

IIIII I I I

I I I I III!

IoQ X)O

Figure 52. Aminco-Winslow porosimeter determination
Hughes LAF nosecap.

128



Molded Nosecap

Numb e r

3H35

3H35

3H36A

3H36A

3H40

3H41

3H44A

3H46

3H53C

3H53E

Tensile

Strength-psi

1103

1250

1220

1345

1455

1290

1500

1304

1273

1384

Mean 13 12.4

Std. Dev. ±115.5

Table 59. Tensile strength of formulation #5 nosecap.

Appearance and Photomicrography

Specimens cut from the Highes molded Nosecap exhibited a much

finer and more uniform grain structure than those cut from Langley

billets. The material was less friable, and machined in a cleaner

manner with less chipping and crumbling at the tool bit. The cut sur-

faces of postcured specimens were deep yellow color which constrasted

sharply to the dark brown oxidized appearance of specimens cut from

molded billets. The yellow color indicated that little or no degradation

from oxidation had occurred during cure and postcure and is no doubt

related to the low porosity of the material. An interesting effect also

connected to porosity is that the Hughes material would not sustain

combustion in air whereas the Langley material, when ignited, will

usually burn completely to a fine ash. Photomicrographs of fractured

surfaces of Hughes and Langley material show a marked increase in

homogeneity of the Hughes material (Figures 53 and 54). The large

nylon particles, postcured microspheres, cracks and voids are no

longer in evidence. Photomicrographs made at NASA Ames Laboratory

show these features in greater detail. These photographs will be

released in a forthcoming report from that facility.
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3 . 5  SUMMARY O F  THE DEVELOPMENT O F  AN IMPROVED NYLON 
SYNTACTIC FOAM 

The second phase of this investigation produced a reproducible 

analog (HFN Resin)  of the commercial  phenolic novolac and simple 

procedures  for  upgrading the nylon and microspheres .  

for the raw mater ia l  a r e  found in Appendix VII .  

Specification 

A mathematical  analysis of the volume fraction relationship of 

ingredients in the formulation provided a useful tool for  changing the 

formulation. A molding process  was developed which included the new 

features  of dielectric preheating and molding to size.  

the Langley and Hughes mater ia l s  and processes  is  shown in Table 60. 

The Hughes molding process  was rapid,  economical, and repro-  

Variation in density within molded nosecaps was not com- 

A comparison of 

ducible. 

pletely optimized but the process  i s  amenable to refinement. 

propert ies  of the Hughes molded nosecaps a r e  compared with the 

Langley Billet mater ia l  in Table 61. 

The 

Figure 53. Photomicrograph (lOOOX) of f ractured surface of 
Langley billet. 
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Figure 54. Photomicrograph (lOOOX) of f ractured surface 
of Hughes molded nosecap. 

I tem 
Langley Billet Hughes Molded Nosecap 

Mater ia l  LAF # 1  Formulation 

Raw Mater ia ls  

Nylon 

Phenolic Novolac 

80 Mesh Average 
Powdered Nylon 
66, 4 0  pbw 

Commer cia1 grade,  
25 pbw 

-120 Mesh Powdered 
Nylon 66, 40 pbw 

Hughes HFN, 37 pbw 

Table 60. Comparison of Langley and Hughes mater ia ls  and processes .  
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Langley Billet Hughes Molded Nose Cap
Item Material LAF #i Formulation

Phenolic Micro- As received, Sieved, (-50 mesh + 230

spheres 35 pbw mesh), 23 pbw

Formulation

Nylon

Phenolic Novolac

Phenolic Micro-

spheres

Mixing Proce-
dure

Molding

Type of Mold

Pr e-tr eatment

Molding Cycle

40% by weight

25% by weight

35% by weight

Low speed tumbling

(Vee Blender)

Positive Disk Mold

12" dia x 4" high

40% by weight

37% by weight

23% by weight

Low speed tumbling
(Barrel tumbler)

Landed, Scout Nosecap

C onfigur ation

Postcure

Cylinder

None Shaped preforms dielec-

trically heated to approx.

200°F. (approx. 35 Sec.)

Finishing

Material loaded in

closed mold at room

temperature, evac -
uated. Pressed to

1500-2000 psi. Pres-
sure relaxed to 100

psi. Temp. raised
from RT to 325°F

(1/2 hr). Part

cured in mold 20 hrs.

Argon atmosphere
42 hrs to 300°F 21

hrs at 200°F, 4hrs

cool to 225°F

Machine all dimen-

sions from billet

Shaped preforms loaded

directly in hot mold.
Press closed to lands at

150 tons. Pressure on

material negligible. Cure

cycle 90 rains. Molding

ejected hot.

Argon atmosphere 12 hrs
to 350°F, 6 hrs at 350°F.
Cool to 100°F 6 hrs

Machine approx.. 100
from exterior surface

only. (Can be molded
to size)

Table 60 (continued). Comparison of Langley and Hughes

materials and processes.
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Density (dry) Ibs/ft 3

% Volatiles (as received)

Total Porosity

Amount of Total Porosity
Interconnected

Gas Transmission

Compres sive Strength

Tensile Strength

Table 61.

Langley

33.0 - 34.5

3 - 501o

5o-5501o

6o-8o%

+90 ml in 1 rain.

2000-3000 psi

350 psi

Hughes

34.0 - 36.0

3 - 401o

5o-53Olo

10-20%

15 mlmax, ln 1 min.

3750-4550 psi

1310 psi

Comparative properties of Langley
and Hughes molded ablator.
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! 4.0 CONCLUSIONS AND RECOMMENDATIONS

Conclusions

This work on the characterization and improvement of Nylon

phenolic syntactic foam has shown.that major improvements can be

achieved by material and process optimization. The compressive

strength, tensile strength and uniformity of micro-structures were

significantly increased, and the porosity greatly reduced. It remains

to be seen whether these improvements are accompanied by a signifi-

cant increase in ablative efficiency, It is hoped that the improvements

will add to the reliability of the material as a heat shield and also -

increase its ablative efficiency especially under high heat flux and high

shear conditions.

The specific conclusions and accomplishments of this program

are listed as follows:

Langley Billet Material and Process

I. The Langley billet molding process is well controlled and

will probably produce uniform results if no changes occur in

the raw materials.

2. The molded billets are uniform within narrow limits from

billet to billet and within billets with respect to bulk

properties.

3. The microstructure of the molded billets is heterogeneous.

4. The molded billet material is low in tensile and compressive

strength and highly porous.

5. The raw materials used in the molded billet are variahle

from batch to batch. Other batches of the same material

may cause great difficulty in producing a molded billet of

similar properties.
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Hughes Material and Processes

I. A reproducible analog of the commercial phenolic novolac

was developed which can be produced with assurance of

uniformity from batch to batch.

2. Simple procedures were developed for upgrading and

increasing the uniformity of powdered nylon and phenolic

microspheres.

3. A mathematical method was developed for optimizing the

formulation of the three phase system consisting of nylon,

microspheres, and novolac resin. This method proved

efficacious in improving the formulation without modiqying

the density and nylon content. The technique should prove

applicable to many other multiphase polymeric systems.

4. An efficient process was developed for molding of nylon

phenolic syntactic foam into shaped parts. This process

proved that dielectric preheating and direct compression

molding of the syntactic foam are efficient and practical.

5. The properties of Hughes formulation (LAF #I) using

upgraded raw materials and molded by the Hughes process

were superior to those of molded billets. Tensile strength,

compression strength, and uniformity of microstructure

were greatly improved. Interconnected porosity and gas

transmission were greatly reduced.

6. The Hughes molding process is amenable to strict process

control and is suitable for scaling-up to large size. The

fabrication of large heat shields by this method would be

especially economical and attractive if jointed, overlapped

or bonded assemblies could be used.

Recommendations

lo The Hughes molded material should be thoroughly evaluated

under a variety of ablative conditions to determine whether

the increased mechanical properties and homogeneity cor-

relate with an increase in ablative efficiency.
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2,

o

The use of the LAF _l formulationand process for large

heat shields should be investigated. First it should be

determined whether close fitting joints and/or bonds in an

ablating surface of this material cause more rapid erosion

at the junction. If this is not so, then the possibility exists

that large and reliable heat shields could be built up from

many premolded segments. With such an arrangement very

large heat shields could be made on existing equipment with

a very low expenditure for tooling and labor. Furthermore,

it has been shown by preliminary experiments at Hughes

that the LAF #1 formulation can be molded directly onto

phenolic fiberglass laminate and honeycomb substrates

thereby producing a firmly attached structural base.

The mathematical relationships developed for the volume .............

fraction relationships of the nylon-phenolic-microsphere

composite may be used for the optimization of other multi-

phase polymeric materials. It is recommended that the

formulation of other ablative composites be optimized using

this technique. The use of empirical approaches to attain

optimum formulation would thereby be eliminated and a con-

siderable reduction in development time and cost would

result.
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" _" APPENDIX I

NON STANDARD TEST METHODS

FREE AND COMBINED AMMONIA

Small samples (approximately 5 gm) were cut from an eight-inch

diameter by two-inch thick cylindrical billet from NASA-Ames.

Samples one half inch thick were cut from the center of the billet.

The sample was ground and boiled in dilute sulfuric acid. After

filtering, excess caustic was added to the filtrate. A faint smell of

ammonia was detected for both types of sample.

The process was repeated, except that the liberated ammonia

was trapped in a known excess of standard acid. Back-titration yielded

an ammonia content of 0. 166_ for the top sample and 0. 178_ for the

center sample.

DENSITY AND'COMPRESSIVE STRENGTH

Compressive strengths and density (per ASTM-D-695) were cal-

culated from specimens 0. 505 inch diameter by one inch high and

1/Z" x 1/2" x 1/2" cubes respectively. The specimens were cut from

the Ames billet at randomly selected locations. Specimens cut from

the Langley billet section were selected with an orientation for both

radial and altitude but not circumferential location. The circumferential

location Could not be determined at this time. The altitude location

may be inverted since no top or bottom orientation was indicated. The

preliminary compression and density testing clearly indicates differ-

ences dependent upon relative location within the billet.

EXTRACTION OF HEXAMETHYLENETETRAMINIC"

Using the Hobart mixer and Z0 gallons capacity kettle, weigh

5 pounds of powdered resin and add 10 gallons of distilled water.

• .L
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Start mixer in position number 3, maintain it running for Z hours

and filter resin. Filter through large Gooch filter and dry overnight

at room temperature.

Repeat procedure six times or more until gel time is in excess of

50 minutes. Typical gel time results are as follows:

Gel Time

Minutes 8 23. 20 28.20 31. I0 32. 15 55.24

N o. of

-Washes 1 2 3 4 5 6

STANDARD TEST METIIODS

Impregnation of ablator material with epoxide resin and deter-

mination of continuous porosity content.

A. Specimens

Small precisely machined specimens of known dimensions and

volume. The standard Hughes specimen was a half inch cube or a

0. 750 inch dia x 1 inch high cylinder, All dimensions measured to

+0. 0005. Other shapes and sizes of specimens may be used provided '

the volume is of the same magnitude,

B. Materials

Epon 828 Epoxide Resin (Shell) 22L-0803 Amine hardener

(Bakelite)

Co Equipment

Micrometers

Analytical Balance•

Vacuum Desiccators equipped with addition funnel and stopcock

Pressure chamber, 50 psi, dry nitrogen

'°_
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D. Procedure

I. Dry specimens under vacuum at I20°F for 8 hours. Weigh

to nearest 0. 0001 gm and measure_+0. 0005 inch. Store in desiccator.

2. Place specimens in beaker in vacuum desiccator. Evacuate

air to 28 inches of water vacuum.

3. Mix resin and hardener in proportion I00 pbw Epon 828 to

37.5 pbw 22L080B.

4. Add sufficient resin to beaker then funnel to completely

im_rnerse specimens, do not break vacuum. Continue until no bubbles

are seen on surface of resin.

5. Transfer beaker to pressure pot chamber, inject 50 psi of

dry nitrogen. Maintain pressure for l hour.

.

acetone.

7.

8.

density.

Remove specimens, clean and wipe with a damp rag with

Weigh to nearest 0. 0001 gm and record resin pickup.

Cure in oven at 120°F for 6 hours, cool to room temperature.

Weigh to nearest 0. 0001 gin, recheck dimension, calculate

E. Sample Data Sheet and Calculations

Heading

Sample Number

Dimensions - inches

I. Volume - inches 3

3
2, Volume cm

3. Initial weight - gins

4. Initial density - gm/cc

5, Impregnated, uncured wt-gm

6. Density. impregnated, uncured - gm/cc

7. Weight of resin uncured - gm

8. Volume of uncured resin - cc

9. Cured weight =gm

I0, Density of cured specimens gm/cc

II. Weight of resin cured - gm

12, Volume of cured resin - cc

13. Actual density of microspheres

in composite - gins/cc

Value ( Example )

A3-D2-R 3

0. 748 dia x 0. 500

0. 2197

3. 6009

2. 0391

O. 566

3. 4620

O. 961

I. 4229

1. 305

3. 4432

O. 956

1. 4041

1. 190

0. 287
D M

Calculation

D = (3)/(2)

(s)/(2)

(5)-(3)

191
rrr

191-131

122LL.
1.18

(101 ,

= 2.857- I. 565 x (I0})



E. Sample Data Sheet and Calculations (Continued)

Heading

14. Volume of solids in composite - cc

15. Total volume of voids - cc

16. Discrete voids as °/e of total vol.

Value (Example) Calculation

l. 685 I._

1.916 (2)-(14)

17.0 _ x 100
(z)

35. Z (8) x 100
(z)

68.1 (17)
(17) + (16) x 100

17. Impregnated voids as % of total vol.

18. Impregnated (continuous) voids as %
of total void volume

SPIRAL FLOW TEST - COMMERCIAL PHENOLIC NOVOLAC

Tooling: Mesa spiral fl_w mold with 2" diameter transfer

pot and plunger

Equipment: Erie ASTM flow press with calibrated pressure

gauge, l KW Mytron dielectric preheater

Molding Conditions: Temperature - as specified +_5°F

Results:

Record a)

b)

c)

d)

e)

f)

Press Load - as specified using

standard press settings

Closing speed - full capacity

Charge weight - 35 gm

Length of well molded flow-inches

Total length of flow-inches

Closing time

Temperature, time closing, press load

Appearance of molding

Pr e-molding treatment

MOLECULAR WEIGHT DETERMINATIONS OF HFN-1, LFN-3, AND

COMMERCIAL NOVOLAC

Discussion

All determinations were made ebulliometrically, using standard

Cottrell-Washburn ebulliometers especially equipped with loading

tubes having standard taper orifices (blown onto the ebulliometers

_See Figure A-1



directly below the condensers). The boiling point elevations were

obtained using Beckman differential thermometers read to a precision

of i0. 005 centigrade degrees.

By the use of the method of comparative measurements, the

necessity for taking barometric variations into consideration was elim-

inated. Further, a number of refinements of the method were thought

unnecessary in view of the level of accuracy required: refinements

such as mandstatic control of the entire system, comparative thermo-

meter calibration, determination of dead-space, high fractionation0f _
...... J

ebulliometric solvent (dioxane), etc.

Determinations of concentration were obtained gravimetri_ally by

removal of samples directly from the elevation ebulliometer in the

usual manner in all cases, simultaneous controls were run on the con-

centration determinations, and the error factor (usually = 1% by wt)

was entered into the calculations.

Itwas found, during standardization of the solvent, that at least

10hrs. were required, between successive concentrations, for equili-

brium of the system to be maintained. (This was in agreement with

previous experience using other solvents).

Calculations were made on the basis of the averages of 20 read-

ings per concentration; and from these averages, a regression curve

was obtained. The molecular weight at zero concentration was in each

case the point reported here.

Experimental

Two identical, well insulated ebulliometers were loaded with

150 ml each of dry, reagent grade di0xane(all determinations were

made using dioxane from a single____bottle, and the K B for this bottle of

dioxane was determined using a dried reagent grade p-terphenyl as

*Surface activation of the ebulliometers was not done, since

experience showed that scratching the inside surface of the percolator

bell, together with the use of capillary tubes, assures satisfactory
evenness of boiling and solvent delivery to the thermometer bulb.

A-5 ;
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_ PRESSURIZING BULB

CONDENSER

SOLUTION LEVEL

WEIGHING TUBE AND'BLOWN-IN

TUBE
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(FOR CONG. SAMPLES)

"q_'GLAS-COL CYLINDRICAL

HEATING MANTLE

_PERCOLATOR BELL

Figure A-1. Sketch of Molecular Weight Apparatus (Ebulliometer).

standard solute). The pure solvent was boiled 3 to 5 hours before

obtaining the thermometer differential for the zeroth concentration.

Addition of solutes was made in solid form rather than in solution.

The loading was done by diverting the vapors from the condenser through

an especially constructed weighing tube which had two orifices blown

into it. In this way, the solid solute could be washed into the ebullio-

meter by fresh hot solvent condensing on the weighing tube.
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• Four successively larger concentrations were used in all three

cases_ allowing 10 hrs. to lapse between loading and the taking of

elevation readings. 20 readings were taken for each concentration, the

readings being taken 2 minutes apart. (This included the zeroth con-

centrations as well. ) In obtaining samples for the determination of

concentration, the ebulliometer was pressurized with an ordinary

pipette bulb fitted with a connection to the upper end of the condenser.

In this way, the extraction tube of the ebulliometer could be flushed

out, and the samples, withdrawn with minimum disturbance of the

system. A total of approximately 5 ml of solution were extracted in

each case, (including preflushing of the extraction tube). The concen-

tration samples, being soluble in cold solvent, were weighed by

difference into small flat pans, and the solvent was pre-evaporated

from the pan to near dryness, leaving a thin film of the solute. The

residue was then washed several times with acetone, and final evapora-

- tion performed in a vacuum oven at approximately 50°C. , 20-30 mmHg.

In each gravimetric determination, a control was run simultaneously

with the concentration, and a correction factor was applied to the

determination based on percent by weight solvent, residue. The residue

error amounted to 5 1 _ by weight.

Calculation of Molecular Weight

The average zeroth delta was obtained in each determination and

molecular wt points calculated at each concentration as follows:

MW
n

KBX C_ n , where: MW n

(_o - An)

= Mol. Wt. at n_th
concentration

C n = Concentration in gm
solute per Kgm solvent

_o = Average zeroth delta.

A n = Delta at n'th conc.

KB = Ebulliometric constant

SDeltas were obtained by difference between pure solvent :
reference reading, and elevation reading.
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Calculation of Regression Curve

In each case, the average molecular weights for the various

concentrations were used as abcissa in the regression curves:. The

least squares curves were obtained from the following simultaneous

linear equations :

I = na+l C bM--Wn n

_ M--WnX Cn = _Cna +I (Cn)2b

whe re

= ave rage Mol. Wt.MW n

n = No. of concentrations

C = Concentrations
n

and the regression equation:

/%

MW = a+Cb,

where

a = MW at zero concentrations

(See Figures A-Z thru A-5. )
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APPENDIX II

PROBABLE SOURCES OF VARIABILITY IN COMMERCIAL

RAW MATERIALS

RESIN

The following factors are major sources of variabitity in the

manufacture of pulverized Novolac Resin.

Resin Synthesis

Raw mate rials

Phenol or tar acids

Formaldehyde '.
Acid

Hexamethy [enet et romin e

Equipment (resin making)

Weigh tanks
Kettle size

Kettle material

Kettle condenser

Discharge and storage pans

Operating conditions

Cooling water

Storage

Pulverizing

Batch blending

Equipment

Packing

RAW MATERIALS

Phenol

Because of its orthocresol content, phenol from coat tar distillate

is not interchangeable with synthetic phenol. Actually synthetic CP

phenol [s obtainable at a premium of only Z-3#/lb and hence there is

little economic advantage to be gained by the substitution.

There is more risk of contamination with tank car delivered

product than with the drum product. However, a color and melting point

standard should be sufficient for the quality control of synthetic phenol.
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Formaldehyde

In the synthesis of phenolic resins this compound is usually used

as the 37% solution (formalin), available tntwo versions.

The so-called inhibited version contains methanol and is insensi-

tive to aging. However, it reacts more slowly with phenol than the

alcohol-free material and there is reason to believe that some methoxy

formation occurs.

The methanol-free solution tends to change on aging. The formal-

dehyde polymerizes so that in time a heavy flocculent precipitate of

paraform settles out. In addition, the Cannizarro reaction results i.nthe

formation of formic acid.

The loss in yield due to the acid formation is of far less importance

than the resulting change in pH. Unless this change is compensated for

by a reduction in catalyst, the reaction rate will be affected.

Acid

The acid catalyst is not likely to be variable per se. That is, any

variability will probably be the result of human error in handling after

opening the container. In the usual oxalic-acid-catalyzed reactions the

acid is added in portions until the pH is within the specified range

before heating the mixture.

Hexamethyle netet ramine

This product can vary due to moisture content. This variability

can come from two sources: (1) failure to remove water in centrifuging

the crystals and (2) exposure to humid air while store in open bins.

In addition, the amount per pound of resin is deliberately varied

to obtain a controlled gel time (i.e., to compensate for variable resin).

RESIN MAKING EQUIPMENT

Weigh Tanks

Unless the weigh tanks are allowed to drain thoroughly between

raw material charges the ratios of the starting ingredients will vary

and therefore the molecular weight of the finished NovoIak will vary.
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In addition, if the weigh tanks are used for a variety of products,

small amounts of ingredients not called for by the recipe can get into

the product.

The above remarks also apply to the piping. Here the problem

will be more serious for kettles far fromthe weigh tank than for the

nearer kettles.

Obviously all of this variability can easily be eliminated by pre-

cisely specifying procedures.

Kettle Size

This can have an effect because of differences in heat transfer

rates. However, its main effect seems to be on the resin color.

Whether this metal contamination has an adverse effect upon the high

temperature stability of the resin is a moot point. On the other hand

it is hardly likely to have a beneficial effect.

In any case for production of light-colored resins glass-lined or

stainless steel kettles are preferable to cast iron, nickel and copper.

Condenser

Condenser tubes can become coated with paraform or entrained

resin during the dehydration cycle. In the violently exothermic portion

of the reflux cycle of the following batch flakes of the coating can get

dislodged and carried into the resin.

Another source of contamination is the kettle wall itself where

material can get baked on during the dehydration cycle.

Actually both kettle and condenser should be thoroughly cleaned

after every batch even if only one product is being run in a series of

batches.

Discharge-Storage Pans

Usually novolaks are discharged into steel pans stacked so that

cascading can take place, thus eliminating the necessity of shuffling the

pans of a given stack with a fork lift truck. Thus there is a degree of

mixing in this operation.
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However, during the discharge cycle liquids (water, phenol, etc. )

are draining from the line to the condenser and also refluxing from the

kettle head and are accumulating on the resin surface. This accounts

for the difference between the last fraction of the discharge and the

first.

Since the pans are uncovered while in storage dust, dirt and even

foreign resin can accumulate on the resin surface.

In removing the solid cold resin by hammering lumps of resin can

be left adhering to portions of the pan (e. g. , corners) to contaminate a

subsequent resin.

Simple awareness of these sources of variability should be suffi-

cient to lead to their elimination.

However, if high purity material is to be made in glass-lined

equipment then it is taking an unnecessary risk of metal contamination

to discharge into steel pans. Therefore use of Teflon-coated pans

should be considered.

Variability of some resin properties can be expected to have a

pronounced effect upon the molded billet properties. In molding the

material the resin melts, flows, and gradually increases in viscosity

until gelation occurs. It is evident that these phenomena are dependent

upon particle size and distribution of the resin melting point, viscosity,

and curing rate (or gel time) and that these properties must be

controlled.

For example if particle size is too large, melting point too high,

viscosity too high, and gel time too short, curing will occur before

sufficient flow has taken place. Thus filler particle will not be wet

with resin and weak bonding will occur. Obviously control of only one

of these properties is insufficient to insure density and strength control

in the finished billet.

Considerations such as the above will show that because of the low

thermal conductivity of the material, "case-hardening" should occur,

resulting in a porosity gradient in the billet. It is evident that the degree

of this variability will be highly affected by the resin properties.
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NYLON

The following properties are considered to be the most likely

sources of variability in the nylon.

• Moisture content

• Amount and type of inorganic constituents

• Molecular weight distribution

• Particle distribution

• Contamination

The moisture content of nylon can run as high as 2.5 percent under

ordinary conditions of humidity and temperature and as high as .8.5 per-

cent under extreme conditions. Large amounts of moisture in the nylon

can cause error in compounding a molding material. In addition, the

resulting molding material may have undesirable molding properties or

yield parts with undesirable physical properties.

The amount and type of inorganic substances can influence the

properties of the nylon, particularly if such substances have been added

to enhance the high temperature properties.

Large variations in the molecular weight distribution will affect

the melting point range and possibly the ablative properties. It is not

believed that a high-production polymer of this type will exhibit sig-

nificantly large variations in molecular weight.

The particle size distribution of the nylon can have a pronounced

effect on the ablative properties of the molded composite containing it.

Large amounts of contaminants will undoubtedly influence the

ablative properties. The observance of ordinary precautions in the

formulation of molding material and the fabrication of billets should

make this potential source of variability insignificant.

PHENOLIC MICROSPHERES

It can be assumed that the phenolic resin used in the manufacture

of microspheres will be more uniform than the commercial novolac.

This assumption is made on the supposition that resin for microspheres

must be controlled in melt viscosity, curing time, surface tension, and
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other properties in order to assure high production and economy in the

subsequent blowing operation. However, the sources of variability

discussed for novolac resin will also apply to the raw resin for micro-

spheres but to a lesser degree.

The blowing process for the produdtion of microspheres is also a

source of variability. The diameter, shape, wall thickness, and dis-

tribution of these factors are known to be variable. Impurities may be

introduced by the blowing agent and from the reaction and handling

equipment. Finally, the degree of damage to the microspheres due to

handling, transportation, and storage is another source of variability

in the final material as used by the formulator.
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.... _ APPENDIX III

SAMPLING AND TESTING PLAN FOR LANGLEY ABLATOR
BILLETS AND RAW MATERIALS

,1. Introduction

This is the detailed test plan for the Ablation Materials Study

Program (NAS 2-2739). The plan includes a list of the tentative tests

for each category of material, the number of tests planned, the

statistical approach and level of confidence for each of the investigations.

Also included is a program schedule for the various phases of the

investigation.

2. Summary

The evaluation of the billet variability will be done in several

steps.

2.1 The whole billet will be checked for overall appearance by

visual and X-ray examination, and for density.

2.2 The billets will be thoroughly sampled and tested throughout

according to a detailed statistical plan using rapid and economical tests .....

such as density, compressive strength, moisture content, etc. The .....

results will be analyzed statistically.

Z. 3 Selected areas, and areas showing significant variability in

step (Z} will be subjected to more complex tests including, porosity,

microscopic examination, T.G.A., degree of cure, IR spectroscopy,

ash content and spectral emission, and ablation tests by Ames

Laboratory.

An additional check on the variability of the Langley material

will be provided by testing of the formulation samples for each billet.

The raw materials for each billet will also be sampled and tested

to determine whether raw material variation correlates with molded -

billet variation.
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3,' Sampling and Testing of Molded Billets

3.1 The total volume of each billet will be divided (conceptually)

into equal sub-volumes from each of which a constant fraction,

symmetrically located within the sub-volume, should be drawn.

Data obtained on samples drawn in this way can be used to calculate

the mean value of any given property without weighting the individual

readings. That is, we use

rather than

X _ --
N

_f.x
-- 1

x = 2_f.
1

The first two billets will be intensively studied to determine whether

each property is constant throughout the volume of a billet and if not

whether its contours are symmetrical or not. Therefore, the sampling

volumes have been selected so that complete symmetry is maintained.

Otherwise it will be impossible to determine whether asymmetry is

actually present or whether it simply reflects an inadequate sampling

plan.

By complete symmetry is meant symmetry with respect to the

billet axis and to a plane through the center of gravity and normal to

the axis.

On each of three equal discs cut from a billet, samples will be

drawn along 120 ° lines and within circles as illustrated in Figure A-6.

3. 2 Analysis of Variance

An analysis of variance will be used to study the data.

It might be well to consider some of the possible results of the

analysis of variance of some property such as cure. This property

could be affected by non-uniform heating and the analysis could be

interpreted from this stand point.
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Figure A-6. Three Nesting Cylinders of Equal Volume

Assume a complete factorial experiment using as factors the

specimen coordinates (axial height, angular distance from index mark

on circumference, and radial distance from axis). The analysis will

yield the effects of these three primary factors plus the four inter-

actions. Let us consider some simple idealized cases.

Case 1. None of the factors are significant, The material is

homogeneous throughout its volume, Samples can be drawn at random

and differences will represent error only.

Case 2. Axial height significant. This is equivalent to stacking

discs differing in cure to form a billet. Could arise in idealized heating

of a cylinder if one flat face is a heat source and radius is infinite in

length, for example.

Case 3. Circumferential factor significant. This is equivalent to

stacking wedges differing in cure around the axis to form a billet. A

surface source heating model which would give only this cure pattern

cannot be constructed.

Case 4. Radial factor significant. Equivalent to nesting hollow

cylinders differing in cure. Heat source is curved surface and axis is

inde finite,
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Case 5. Significant interaction of axial and radial factors.

Equivalent to stacking discs some of which show a radial effect while

others do not. If all of the mold surfaces were maintained at constant

temperature then due to mold geometry heat paths would be quite

different in length. This would give rise to this case.

Case 6. Significant interaction of axial and circumferential

factors. Equivalent to stacking discs made of different wedges. Again

a surface source heating model could not give this result.

Case 7. Significant interaction of circumferential and radial

factors. A line heat source parallel to the infinite axis and on the

curved surface could give this result.

Case 8. Significant interaction of all three factors. One or more

point heat sources at the mold walls could give this result.

Thus if there is a significant variability within billets due to heat

transfer then it is likely to involve the axial and radial factors rather

than circumferential. This would indicate that an experiment should

include more levels of the former than the latter. However, due to

the possible complications of interactions it would be advisable at present

to keep the number of levels of each factor at three.

The significance level for all statistical tests will be . 01.

3.3 Sampling Procedures

3.3.1 Langley Billets

The sampling plan is based on the selection of 6 billets chosen

at random from a set of 10. The 30 billets have been grouped by fives

in the order of molding and one billet selected at random from each

group. By this procedure it will be possible to subtract a trend (or

"learning") variability from the apparent billet variability to estimate

a true billet variability. The random selection is 2, 8, 12, 19, 2?.,

and ?6.
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• ' ' 'A very exhaustive evaluation of one or more billets by all

significant tests listed is necessary for the following reasons.

(1) To determine whether there is a significant variability
within billets.

(2) To determine whether the variability is such that it can
be eliminated in a subsequent step (say increased postcure).

Thus under-cure would be remediable while porosity would
not.

(3) To determine the precautions to be taken in sampling
billets,

(4) To estimate the possibility of eliminating the variability
by changes in molding.

(a) Molding to shape

(b) Electronic pre-heat

(5) To determine whether any tests can be discarded.

Before

consider how

in construction there are always present to some extent relative heat

sinks and sources in the mold itself and hence there is non-uniform

heating of the molding material. In addition, due to the nature of

the, material there are likely to be steep pressure gradients even if

heating is uniform. Thus there will be marked differences in flow

from point to point.

discussing the sampling to be used it might be well to

variability within billets could arise. Due to assymetries ............

The above could result in

(1) Uneven curing throughout the mass.

(2) Non-uniform porosity.

(3) Filler particle segregation by size into flow planes. -....

Such a material would probably be variable from point to point

with respect to most properties but not in a random manner. That is, ...........

the isopleths of a property will be continuous surfaces within the billet.

To detect this type of variability sampling will have to be done

geometrically with respect to a constant orientation in the mold. "
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. Sampling will be carried out by taking surfaces normal to the

axial, radial and circumferential directions. If taken by threes as

indicated in Figure A-7 there will be a total of 27 locations from each

billet. For each test two adjacent specimens will be cut from each of :

the 27 locations, Each specimen will be labelled as to location in the

billet and assigned at random to one of two piles (testing replicates).

The 27 specimens of a replicate will be tested in random order. The

data will be recorded on forms having testing order and specimens

identification specified in advance. A sample sheet is shown at the

end of this section. "

-- _C4

A

Figure A- 7. Compression Specimens Locations and
Identification.
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• !As soon asthe data of both replicates of a given test have been

obtained, an analysis of variance will be performed to determine the

nature of the variability. However, regardless of the:results of this ' "

analysis another billet will be evaluated exactly like the first billet.

The reason for repeating the series of tests with another billet is to

obtain the information necessary to distinguish between biases and

random billet variability. That is, to distinguish differences between

points to all billets from those peculiar to the first billet (due possibly

to the particular batch of material and its molding or processing

conditions).

The knowledge gained from the analysis will be applied immediately

to the sampling of the remaining billets. If no bias is found, specimens

will be taken at points randomly selected from billet to billet. In the

contrary case, sampling will be done within the same specified volume

of each billet. If more than one volume is sampled each specimen of a

billet must be identified by volume location.

Aside from the reduced sampling and possible reduction in the .....

number of properties measured, the procedure for evaluating the

remaining billets will be the same as for the first two. Analyses of

these data will reveal whether there are significant billet differences

for the properties tested.

3.3.2 Langley Formulation Samples

Samples of the mix used to form billets at Langley will be

subjected to testing in the following manner. Approximately 100 grams .......

will be used to mold a billet model at one fourth scale. This molded

model will be used to fabricate compression specimens. The cured

properties will be evaluated from the model.

The properties of each model will be correlated to the full size

billet. Properties of those billets which are not shipped to Hughes -- •

Aircraft will be predicted from the models. The modeling provides a

technique for evaluation of the synthesized molding mixes. The model

evaluation will be used to predict the properties of full scale billets

and/or nose cones.
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Two randomly selected samples of each billet mix and raw

material will be tested for each response. A single factor analysis of

variance will be performed to determine whether there is a significant

difference between mixes. In addition, quality control charts (X and R)

will be prepared for possible use in the future, The sampling

instructions for the raw materials of each Langley billet mix are

shown in Appendix A.

3,4 Weighting and Ordering of Tests

The weighting and ordering of the tests performed in this program

are vitally important to the final outcome, Testing will be broken down

into five categories:

(1) Billet Tests

(Z] Moldable material tests (Langley formulation mixes)

(3) Phenolic Microballoon tests

(4) Phenolic resin tests

(5) Nylon tests ........

Two groupings will be employed; destructive and non-destructive

investigation. In general, the tests will be ordered to enable the com ....

pletion of non-destructive tests on samples which may later be used

in a destructive test. For example, the moisture content sample may

be also used for compressive strength testing. Tests such as these

can be performed with the same sample and actually save effort since -

the compressive specimen should be brought to standard conditions of

temperature and moisture content before testing. The destructive

tests will all require separate specimens, therefore their ordering is

not required.

The weighting of tests will also be extremely important, however,

at this time there is very little that can be said about the relative

importance of the various tests. It is difficult to assess the value of

controlling material properties until each of the variances have been -

correlated with ablation properties. The tests under consideration at

this time are listed in the following table.
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A. Billet Tests

X-Ray Examination

C ompre s sire Strength
Moisture Content
Extractable s

Extent of Cure

Bulk and Apparent Density
Ash Content

Average Size and Count of Component Aggregates
Porosity
TGA
IR Emission

Ablation Testing (Ames Labs)
B. Moldable Material Tests

Material Mixture Sampling
Particle Size and Distribution
TGA

Infrared Analysis
Resin Content

Flow and Viscosity Index
C. Phenolic Microballoon Tests (Raw Material)

Do

E,

Weight Fraction Damaged
Apparent Density
Particle Size and Distribution

Particle Density
Effect of Pressure on Flotation
TGA

Infrared Analysis
Nitrogen Analysis
Moisture Content
Ash Content
IR Emission

Phenolic Resin Tests (Raw Material)

Nylon

Wet Analysis
Infrared Content

Emission Spectra
Moisture Content

Viscosity
Viscosity Index
Molecular Weight Distribution
Particle Size and Distribution
Gel Time

Melting Point Flow
Tests (Raw Material)

Infrared Analysis
Nitrogen Content
Ash Content
Moisture Content

Molecular Weight
Melting Point
Particle Size and Distribution
TGA
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3.5 Testing Program

The five categories of tests will each have a group of tests

selected for the particular material. Not all the tests listed will be

performed on all samples because of (1) the limited amount of material

available and (2) some tests may not be sufficiently precise to show

variability. The test categories and their respective tests are as

follows :

3.6 Code for Specimen Identification

Specimen will be coded for each material to enable simple

identification.

Third Position

Location of Billet

I I

.0 _•F-4 *r-I

0 t_ -_ ,*-_ _ ._
"_ 0 -.,-.a _ -- _ 0 _ ¢_
"_ _) ¢_ 0

v _

2 TGA A 1 R 1 C1
4 IT A2 R2 C2
9 COM- Compression A3 R3

i0 IDSD - Particle size and

distribution

15 MC -, Moisture content

17 XR - X-Ray
19 AC - Ash content

23 NC - -Nitrogen content

MP _ Melting point

MW - Molecular weight

VIS ,- Viscosity
WET - Wet analysis
GEL - Gel time

FLO - Melting point flow

Prefixes: A - Ames; L- Langley; X - Experimental; R - Resin;
N - Nylons; B - Microballoons
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Addendum A - Sampling Instructions for Langley Billet Formulation

The sampling instructions for Raw materials used in ablative

formulation are as follows:

l. Take approximately 25 percent by weight more than needed
for each batch of formulation.

2. Spread in clean pan and mix with clean shovel or scoop.

3. Divide pile into four quarters.

, Combine all material from two diagonal quarters, re-mix,

and quarter again.

5. Mix one quarter and remove I pound sample.

. Package in sealed polyethylene bag and place in one gallon

paint can. Additional cans may be used if volume of sample .....

is too large.

. Mark each sample with all pertinent information, including
if pos sible :

a. Designation of material, manufacturer, batch No., Lot .....

No. , Bag No., Date manufactured, date received and

any property data such as flow index listed on bag. -

b0 Date sampled, NASA Langley formulation or control No. ,

relative humidity and room temperature during sampling
if available.

C. Position in bag or drum from which the sample was taken,

i.e. , top, middle, bottom third, etc.

@ Pack polyethylene bag within can in vibration absorbing

packing. Seal tightly and mail air freight or air parcel post.



0

Billet No. 2

Test Bulk Density

Replicate 1
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1
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1
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2

3

1
2

2

3

3

1

3

1

2

3

3

2

1

1

3

2

2

1

3

3

2

1

1

2

1

Bulk .

Density
G/cc

Sample Data Sheet
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APPENDIX IV

ANALYSIS OF VARIANCE

DENSITY STUDIES - BILLETS NO. 2 AND NO. 8

The cylindrical compression test specimens cut from each billet

were also used for density determinations after thorough drying.

Analyses of variance were performed on the density data of both

billets No. 2 and No. 8. In both analyses the same four factors were

found to be highly significant (i.e., P equal 0. 001 for all 8 cas6s).

The four significant factors were:

1. Axial direction

2. Radial direction

3. Circumferential direction

4. Interaction of 1 and 2

Although it was of interest to determine the nature of the differ-

ence, if any, between the two billets, comparisons should not be made.

Each billet had been machined into specimens and tested as soon as

possible after receiving it. Thus trends or biases could invalidate

comparisons.

In addition error variances of the two billets were incompatible .........

(P equal 0.01). The error standard deviations were:

Billet Standard Deviation

2 0. 11 Ib/cu ft

8 9.19

However obviously explanation and amplification of the results

was required beyond the bare statement of significance of factors. To

attain this end the following procedure was adopted. The mean response

of each level of each significant factor, as measured form the billet

mean, was calculated. Following this the 95% confidence interval of

each mean response was calculated on the assumption that its standard
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deviation was that shown above. (That is an analysis of variance model

was assumed. ) Thus the significance of the four factors could be

interpreted in terms of clearly-defined non-coincident confidence

intervals of their respective levels. In addition, although confidence

levels could not be specified for such comparisons some appraisals of

billet-to-billet differences could be made by considering the confidence

intervals of corresponding factor levels. The results were:

Axial Direction

The 95% confidence intervals of the effects in pounds per cu ft

were:

Axial Cut
Sector

Billet 2 Billet 8

Low High Low High

Top Disc -. 04 m. 07 +. 16 +. 34
Middle Disc -. 51 -. 40 &. 52 -. 34

Bottom Disc ÷. 38 ÷. 49 ÷. 09 +. 27

(It should be emphasized that the above scatters apply to means

of 18 readings. Scatters of individuals would be considerably wider. )

Note the "sandwich" effect. In each billet there is no over lap

of the middle sector interval with that of either top or bottom sectors.

As mentioned above comparisons between billets are of doubtful

validity. However although significance levels cannot be given, it is

interesting to note that the confidence intervals of top discs do not

overlap. This is also true of bottom discs but not of middle discs.

Radial Direction

The 95% confidence intervals of the effects in Ibs per cu ft were:

Billet 2 Billet 8
Perpendicular
Distance from

Axis-inches Low High Low High

2.43 -. 13 -. 03 -. 18 .00
4.21 -. 12 -.01 -.23 -.05

5.44 ÷. 09 +. 20 ÷. 14 ÷. 32



The overlaps indicate thai the two billets are alike with respect

to this factor. The "case-hardening" at the outer radius is quite

evident. The two inner radii values are coincident but there appears

to be a discontinuity at or near the outer radius, i.e., the transition

does not appear to be gradual.

It should be noted that there is an overlap of the intervals of both

billets at each of the three radii. In this regard the two billets are

indistinguishable.

Circumferential Direction

The 95_0 confidence intervals of the effects in Ibs per cu f.t were:

Billet 2 Billet 8

Angular Distance
from Index

degrees Low High Low High

0 ÷.07 ÷.18 _.09 ÷.27

120 -.08 ÷.03 -.24 -.06

240 -.16 -.05 -.12 ÷.06

In both billets the 120 ° and 240 ° intervals overlap but the 0 °

interval does not overlap either of the other two intervals. Thus once

again as in the case of the radial effect there is a consistency prevailing

from billet-to-billet. That is, although there is a within billet vari-

ability associated with angle, there is a tendency for the relationship

to remain approximately constant from billet-to-billet.

Although not as in the case of the radial effect the intervals of

corresponding factor levels of the two billets overlap.
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Axial- Radial Interaction

The 95% confidence intervals of the effects in lbs per cuft were:

Axial Perpendicular
Cut Distance from
Sector Axis - inches

Billet 2 Billet 8

Low High Low High

Top disc
Middle disc
Bottom disc

Top disc
Middle disc
Bottom disc

Top disc
Middle disc
Bottom disc

2.43

2.43

2.43

4.21

4.21

4.21

5.44

5.44

5.44

-. 04

-.39

÷.15

-.12

-.20

÷. 04

-.12

+.32

-.47

Inspection of the intervals reveals that in

÷.15

-.21

+. 34

•.06

-. 02

÷.23

÷.07

÷.50

-.29

-. 07 +. 24

-. 39 -. 08

-. Ol +. 31

-. 19 ÷. 12

-. 25 ÷. 07

-. 04 ÷. 28

-. 21 .-.lO
+. 17 ÷.48

-.43 -. ll

both billets at each of

the two lower radii the middle is lower in density than either top or

bottom. However at the outer radius the situation is completely

reversed, viz., the middle is higher in density. Thus the interaction

indicates that a billet can be approximated by a model consisting of a

"high" density shell enveloping a "low" density core.

Note that the intervals of the billets overlap at each factor level.

The correlation coefficient is +0.81 which is highly significant

(P less than . 001). However it is evident that in addition to random

scatter, bias is present.

Let us consider some implications of this viewpoint.

The density of a billet at each point can be considered to be a

function of the vector representing the point. If the constants of the

relationship are the same for both billets than corresponding densities

will be alike except for random error and the plotted points will be

distributed approximately equally on both sides of the dashed line.

Figure A-8. If the intercepts are different and coefficients alike then

the means of the densities will be different but the slope of the line will

be unity. If both constants of the relationship are different this will be

revealed by means being unequal and slope being different from 1.0.
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The means are different (Billet 2, 33.70 lbs/cu ft and Billet 8,

33.50 Ibs/cu ft).

The slope should not be estimated by the usual least squares

technique because both variables (densities) are subject to error.

Bartlett's method of means can be used to yield a value of +0.73.

Apparently the third condition most nearly represents the true

situation.
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APPENDIX V

SYNTHESIS OF PHENOLIC NOVOLACS

LAB ORA TORY PREPA RA TIONS

Low Factor Novolac #1

A phenolic novolac was synthesized in the laboratory from high

purity starting materials, so that a "standard" resin of a more or less

well-known or easily defined chemical and physical characteristics

would be available with which to compare the Bakelite material under

investigation. Reagent grade phenol, uninhibited formaldehyde "(cela-

nese formaldehyde, 37% aqueous solution), and reagent grade oxalic

acid (low in metal) were used in the following preparation; termed a

"low factor novolac":

Phenol 2 00 g.

Formaldehyde 37% sol 136 g.

Oxalic Acid 2 g,

The ingredients were blended in an all glass resin reaction kettle fitted

with a Teflon blade stirrer, thermometer, and reflux condenser. A

Variac regulated mantle was used to heat the system gradually to water

reflux temperature (100-101°C), which was maintained for a total of

about 4 hours, with continuous stirring. No difficulties of the runaway

"exotherm" type were experienced, pH of the reaction mixture was

0.9 at Z5°C, as measured by a Beckman pH meter. At the end of the

4 hour period, a test of the aqueous phase of the heterogeneous reaction

mixture was negative for formaldehyde (Z, 4-dinitrophenylhydraxine).

Water was then distilled out of the system, with continuous stirring,

until the reaction mixture temperature reached 160°C. The apparatus

was dismantled, and the viscous, transparent water-white novolac was

poured in a glass beaker to cool overnight to a brittle, glassy solid,

easily powdered. Stored in a glass jar at room condition for Z4 hours,

this product, designated LFN-I turned faintly pink. The product was
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soluble in polar solvents (acetone, ethyl alcohol, MEK)but not in

non-polar solvents (carbon tetrachloride, toluene).

An IR scan of the product examined as a film deposited on a NaC1

window from acetone solution was virtually identical with a scan of the

commercial resin, indication that the novolac has been very closely

duplicated both as to composition and as to advancement of cure in the

control synthesis attempt.

'High Factor Novolac #1

In continuation of the synthesis program,

novolac was prepared as follows:

a '_nighfactor" phenolic

Phenol 200 g.

Formaldehyde 37% aq. solution 144 g.i

: Oxalic Acid Approx. 2 g.

The reagent grade phenol and oxalic acid, the Celanese uninhibited

formaldehyde, and the apparatus and procedures used were the same

as those described in the previously reported "low factor" novolac

preparation, except for the duration of the reaction "cook", which was

approximately 2.5 hours. (In the "low factor" synthesis, the time was

approximately 4 hours. ) Essential completion of the reaction was indi-

cated, as previously, by a negative dinitrophenylhydrazine test for

formaldehyde. The product was finally recovered as a brittle water-

white solid, very soluble in acetone. Total product yield was calcu-

lated as 213 g., of which 172 g. was recoverd as solid resin from the

cooled reaction mass, the remainder being recovered in the form of a

27%o acetone solution.

Low Factor Novolac #2

A second experimental low factor Novolac (LFN-2) was prepared,

in an effort to obtain a resin with minimum inorganic ash. The rea-

gents were the same as those used in the previous "cooks": MCB

reagent phenol, Celanese inhibitor-free 37% formaldehyde, and reagent

oxalic acid. However, in order to minimize contamination of the resin

by the equipment, the glass reaction kettle and the thermometer, were
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boiled out with dilute hydrochloric acid solution,

and blade were rinsed with dilute nitric acid.

were finally rinsed with distilled water.

The reaction mixture consisted of:

Phenol

Formaldehyde, 37%

Oxalic Acid

and the stirrer shaft

All the parts so treated

1000 g.

680 g.

10 g. (added dry)

The materials were blended in the B-liter resin kettle to a homogeneous

water-white solution, pH 0. 1 - 1.0. On heating, a rapid exothermic

reaction developed, and an indeterminate quantity of material, chiefly

formaldehyde violently boiled up through the condenser and was lost.

The system was rapidly cooled down and allowed to come to room

temperature. On the following day, it was decided to complete the run

in order to obtain a resinous product which could at least be used for

ash analysis. The reaction mixture was held at water reflux tempera-

ture for about one hour, until an opaque, milky product was formed.

Finally, water was distilled out of the system, and the clear, nearly

water-white, viscous product was poured into a Teflon-film lined tray

to cool to a transparent, brittle, easily powdered solid. Total yield,

approximately 850 grams.

High Factor Novolac #3

A second experimental high factor novolac (HFN-2), was prepared.

The 3 liter reaction kettle and fittings used in the LFN-2 preparation,

cleaned of all resin and reactants of the previous run by thorough solvent

rinsing, was again "cleaned out" by boiling one liter of dilute H C1 (100

ml conc. acid/liter solution) for 2 hours at water reflux temperature.

After this treatment, the apparatus was completely disassembled, and

all parts were thoroughly rinsed with distilled water.

The reaction mixture consisted of:

Phenol 690 g. (remainder of the MCB reagent

Formaldehyde (B7%) 500 g.

Oxalic acid 8 g.

phenol supply)

(Celanese)
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The materials were placed in the kettle; the stirrer, thermometer, and

condenser were attached, and the system was allowed to stand at room

conditions overnight. Next day, the system was heated cautiously to

water reflux, with continuous gentle stirring, and maintained at a reac-

tion temperature of 100 -101°C for about 2 hours. Water was then dis-

tilled off, with slow stirring, until the clear, nearly water-white fluid

resin was isolated. On cooling in a Teflon-film lined pan, this was

recovered as a 615-gram block, similar in appearance and frangibility

to the previous products.

Low Factor Novolac #3

A fifth preparation was carried out (low factor Novolac #3 LFN'3)

with the same apparatus and procedures. The only important difference

in this run was the use of chemically pure phenol (National Aniline

reagent).

The formulation was:

Phenol 800 g.

Formaldehyde (37%) 544 g.

Oxalic acid 8 g.

The resinous product as finally isolated was a transparent, amber

colored, brittle solid. The color was evidently due to darkening of the

phenol, which was seen to occur when the solid reagent was melted in

its original glass container to facilitate pouring.

LARGE BATCH PREPARATION - HFN NOVOLAC

EQUIPMENT REQUIREMENTS

Stainless steel resin kettle-of approximately 60 gallons capacity,

with agitator, jacket or coils for cooling, condenser, and bottom

discharge outlet. Should be capable of heating to at least 150°C with

either steam or electric heaters.

Equipment for melting phenol, sufficient capacity to accommo-

date a 55 gallon drum.
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Stainless steel weigh tank and scales.

Stainless steel or Teflon-coated shallow pans for resin discharge,
Drums for storing resin Beckman pH meter.
Micropulverizer.

Rotex for sizing.

NOVOLAC FORMULA TION

60 gallon kettle charge synthetic Phenol (100%)

Formalin (37%, uninhibited)

Oxalic Acid

(840 g. or 13.3 g. equiv.)

Yield about 200 pounds

185 pounds

133 pounds

I, 85 pounds

PROCEDURE

Charge formalin and phenol into clean kettle.

Add oxalic acid to give pH of 0.5 to 1.0.

Heat charge cautiously to reflux at atmospheric pressure.

Control exotherm with cold water in jacket or occasionally

vacuum refluxing with agitator running.

Continue atmospheric pressure refluxing until formaldehyde

content is less than 1% of its initial value. Reflux time = 2 - 4 hours.

Remove water by distilling at atmospheric pressure with stirring.

When resin temperature reaches 160°C, pour batch into clean

shallow steel pan to cool.
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' APPENDIX VI - MOLDING INVESTIGATION - SCOUT NOSE CAP

i. 0 PLAN

The investigation will be carried out in three phases:

I. 1 Molding of nose caps from ungraded raw materials, and

commercial resin using Langley and HAC LAF No. 1 formulation.

1.2 Molding of nose caps from upgraded raw materials, commer-

cial resin, using Langley and HAC LAF No. 1 formulation.

1.3 Molding of nose caps from upgraded raw materials and HAC

HFN No. 4 resin using Langley and HAC LAF No. 1 formulation.

Z. 0 PRETREATMENT OF RAW MATERIALS

2.1 Powdered Nylon and Phenolic Microballoons

2. i. 1 Tumble as received nylon and microspheres in tumbling

barrel {1/2 full) for 3 mins.

Z. 1. Z Divide into approx. 1000 gm lots and package in indivi-

dual polyethylene bags. Take 50 gm sample for moisture content.

Place bags in sealed container.

2.1.3 Mark each bag with batch No. grade, moisture content,

and approx, amount of material.

2.2 Phenolic Resin Commercial

2.2. 1 Clean tumbling barrel by blowing out with air and

wiping with clean rags. Fill approximately 1/3 full and tumble for 30

minutes with intensifier star in place. Sample 50 gm for moisture

content analysis.

2.2.2 Repackage in approx. 1000 gm lots in individual

polyethylene bags. Place bags in sealed Container. Mark container

with material name, batch number, tumbling treatment, moisture con-

tent, and approximate amount of material in each container.



3.0 PHASE I MOLDINGS

Phase I moldings will be made from un-graded raw materials.

formulations will be used.

Two

Based on dry wt.
Langley HAC

Formulation LAF I

wt-% wt-%

Commercial Novolac

Phenolic Microspheres

Powdered Nylon - 66
80 mesh

25.0 37.0

35.0 23.0

40.0 40.0

3.1 Formulation Procedure

3.1. 1 Formulations will be mixed in the tumbling barrel

using the star intensifier. No more than 12 pounds (5443 gin) will be

mixed at one time.

3.1.2 Tumbling barrel charges will be as follows:

Langley HAC
Formulation LAF No.

Wt-Gms Wt-Gms

Nylon 2.177.0 2177.0

Microspheres 1905.0 1252.0

Commercial Novolac

Corrected to dry wt. 1361.0 2014.0

Total Charge 5443.0 5443.0

3. 1. 3 Weigh materials to nearest gm. Weigh in polyethylene

bags at all times. Correct material weights for moisture content as

follows: (if moisture content is 3% multiply above weights by _03 to

obtain actual charge weight to be added to mix). 100

Calculate corrected weight for each material.

3. 1.4 Add weighed charges to tumbling barrel from polyethy-

lene bags by passing through a 20 mesh sieve placed over the opening

of the barrel. Add nylon first, then microspheres, then resin. Seal
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top of tumbler tightlyand tumble for 30 minutes, Examine to see if

uniform mix has been obtained. Tumble an additional 5 minutes if

necessary to obtain uniform mix.

3.1.5 Package formulation in polyethylene bags. Label with

type of mix, and date mixed. Place bags in sealed containers.

4. 0 MOLDING PROCEDURE - PHASE I

4.1 Use two-IZ pound mixes of Langley formulation as described

in 3.1.1 to 3.1.5.

4.2 Heat mold to 300 +5°F. Continuously record thermocouple

readings during molding. Set press load at 150 tons. Attach vacuum

lines to mold.

4.3 Clean mold, weigh out calculated charge wt. Based on dry

weight of 1758 gms.

4.4 Dielectrically preheat mix to soft consistency with CP 40A

Preheater and place charge in mold without delay and without loss.

Record dielectric preheat conditions.

4.5 Close mold at medium speed with vacuum to full close. Cure

at 300 ° ±5°F for 3 hours. Remove part hot. If part blisters, cool

subsequent parts to 200°F before removal.

4.6 Place hot part on flat cardboard or fiberglass laminate, insu-

late with fiberglass or other fibrous insulator and allow to cool slowly.

4.7 After cooling to room temperature, weight part. Adjust

future charge weights to produce finished molding of 1708 gm cold

we ight.

4.8 Make five additional nose caps as in 4. Z to 4.7 with suitable

modifications as on preheat and cure procedure, and charge weight to

produce uniform part. Scribe these parts in order on flat surface with

I-L- numbers 1 to 6 for Langley Formulation, ungraded materials,

HAC process. Inspect major dimensions.
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4.9 Repeat above procedure (Para. 4.2 through 4.7) using

two-12 pound mixes of HAG LAF No. 1 formulation as described in

Para. 3. 1. 1 through 3. 1.5. Modify preheat, charge weight, etc. , to

obtain uniform moldings weighing 1708 gm cold weight. Label parts

I-H-numbers 1 to 6 for HAG LAF No. 1, ungraded materials, HAG

Process. Inspect major dimensions.

5.0 POSTCURE

5. 1 Place five cold parts on rack and place rack in sealed postcure

canister. Attach the thermocouple to inside surface of center part and

continuously record temperature.

5.2 Secure canister in Despatch oven, attach argon line s with

inlet at top and flush out with nitrogen gas for five minutes.

5.3 Attach argon bottle, adjust flow rate to 40 cc/min.

5.4 Raise temperature from room temperature to 350°F in 12

hours, maintain for 6 hours. Cool to 100°F or less before removing

parts. (Note: Make trial run with previously molded parts first in

order to see if postcure is too severe).

5.5 Re-weigh parts, re-inspect major dimensions, and package in

polyethylene bags.

6.0 PHASE TWO - UPGRADED RAW MATERIALS

6.1 Repeat above procedure Paras. 2 through 5 substituting 120

mesh nylon and screened Microspheres. Label parts II-L-Nos. 1 to 6

for Langley Formulation, Upgraded Materials, Hughes Process, and

II-H-Nos. 1 to 6 for HAC LAF No. 1, Upgraded Materials Hughes

Process.

°_.
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7.0 PHASE THREE, UPGRADED MATERIALS AND HFN No. 4 RESIN

Substituting HAC HFN No. 4 resin for commercial novolac in

Para. 6.0, repeat above procedure Paragraphs 2 through 5. Make

20 HAC LAF No. 1 parts instead of six. Label parts as follows:

II-L- Nos. 1 to 6 for Langley Formulation, Upgraded Raw

Material, HFN No. 4, Hughes Process.

III-H- Nos. 1 to 20 for HAC LAF No. I, Upgraded Raw

Material, HFN No. 4, Hughes Process.
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APPENDIX VII - MATERIAL SPECIFICATION

HUGHES MATERIAL SPECIFICATION (PRELIMINARY)

PHENOLIC MICROSPHERES

1.0 SCOPE

This specification covers the phenolic microspheres used in com-

pounding the molding mix for syntactic foam ablative material.

2.0 APPLICABLE DOCUMENTS

3.0 REQUIREMENTS

3. 1 Qualifications

3.1.1 The phenolic microspheres shall be a product that has

passed the qualification tests described in Section 4. 3.

3.2.1 There shall be two types of materials as follows:

Type I - As received

Type II - Sieved and upgraded

3.2 Physical Properties

3.2. 1 Particle Size Distribution, The particle size distribu-

tion shall meet the following requirements when subjected to the sieve

analysis in accordance with Section 4.3. 1.

Type I - As received from manufacturer

Type II - U.S. Sieve % Retained % Passes

No. (Min.) (Max.)

50 0 100
120 25 80
170 25 40
Z30 25 0

3.2.2 Volatile Content. The volatile content shall not exceed

5 percent when tested in accordance with 4.3 2.
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3.2.3 True Density. The true density shall lie as follows

when tested in accordance with 4.3.3.

Type I - 15.0 ± 3.0 lbs/ft 3

Type II - 15.5 • 1.5 lbs/ft 3

4.0 QUALITY ASSURANCE PROVISIONS

4. 1 Sampling. The following sampling procedure shall be

applicable.

4. I. I Sampling Plan. Each drum shall be sampled from three

distinct locations as follows: Top, bottom, and center. A 150 gram

sample shall be removed from each location.

4.2 Procedure (note for Type If). All of the material shall be

passed through a U.S. Sieve No. 50 mesh screen. Any material which

remains on the 50 mesh screen shall be eliminated. All of the material

shall remain on a U.S. Sieve No. 230. Any material which passes

through the 230 mesh screen shall be eliminated.

4.3 Particle Size. The qualification tests shall be as follows:

4.3. 1 Particle Size. The test for particle size distribution

shall be made using standard U.S. Sieves and a Rot-A-Tap mechanical

shaker or its equivalent. The sieves listed in paragraph 3.2. 1 shall be

used with a cover and a bottom pan; with the No. 50 at the top and the

230 at the bottom. 25 grams + 0. I grams of the microspheres shall be

poured onto the No. 50 sieve screen, the cover put into place and the

assembly allowed to shake for 15 ± 1/2 minutes. Following the shaking

the material retained on each sieve shall be separately removed and

weighed to the nearest 0.01 gram; the percentage of material retained

in each sieve screen shall be computed as follows:

Percen% re£alne_ = _rams of material retained

divided by total recovered
mate rial

The percentage passed by each screen shall be the total percentage

retained on all the sieves below it in the sieve assembly; for example

the percentage passed by the U.S. No. 50 screen would be calculated

as follows :
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Percent passed by US No. 50 screen - percent retained on

US No. 12.0, plus, percent retained on

US No. 170, plus percent retained on
US No. 230

4.3.2 Volatile Content. The volatile content of the micro-

spheres shall be run on triplicate samples of i gram ± 0.1 gram; the

samples shall be weighed to 0. 0001 grams; the tare of a crucible shall

be weighed. The sample shall be weighed {W1) , then dried in a

mechanical convection oven at 300°F for 30 + 2 minutes, and reweighed

(W2). The volatile shall be calculated as follows:

(W 1 - W2)
Percent volatile matter = x i00

W 1

4.3.3 True Density. The true density of the microspheres

shall be run in duplicate samples. Determine the weight of the empty

Pycnometer to the nearest 0. 001 gram. Determine the weight of the

Pycnometer filled with analytical reagent grade Toluene containing

0. Ig0 Duponol G by weight. Determine the density of at least 100 ml of

the Toluene-Duponol G mixture. Fill lower chamber of dry Pycnometer

approximately half full of microspheres which have been dried for

18 hours at 120°F. Determine the weight of the pycnometer and

microspheres. With pycnometer in vertical position, add Toluene-

Duponol G mixture carefully until no air bubbles remain. Weigh

pycnometer with microspheres and Toluene. Calculate the true density

with the following:

WaD t

True density = WtWm

W m = Weight of microspheres

D t = Density of Toluene-Duponol G mixture

W t = Weight of the Toluene without microspheres

Wtm= Weight of Toluene with microspheres present
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HUGHES MATERIAL SPECIFICATION (PRELIMINARY)

RESIN.- PHENOLIC NOVOLAC

1.0 SCOPE

1. 1 This specification covers dry powdered phenolic novolac resin

for use in the formulation of low density ablative foam.

1.2 Classification

Resin included in this specification is classified in two types,

Type I- Commercial

Type II - Highly characterized phenolic

2.0 APPLICABLE DOCUMENTS

HMS 16-1096, Glass Fabric, Impregnated with Phenolic Resin

3.0 REQUIREMENTS

3. 1 Qualification

The phenolic novolac resin furnished under this specification

shall be products which have passed the qualification tests in Table I.

when tested in accordance with Section 5.

Type I Type II

Total Volatile Content

Viscosity Number

Ash Content

Particle Size

Ware r Extractable-% {including

Hexame thyle nete tramine

Cure Time - seconds

5_0 max.

2. 1-2.3

0. 080% max.

-325 Mesh

16% max.

110. 140

5% max_

2.1-2.3

O. 080% max.

-250 Mesh

14% max.

110-140
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4.0 SAMPLING AND TEST PROCEDURES

4. 1 Sampling - The following sampling procedure shall be

applicable.

4.1. 1 Sampling Plan - Each drum shall be sampled from

three distinct locations as follows: Top, bottom, and center; A

150 gram sample shall be removed from each location.

4.2 Test Procedures

4. Z. 1 Volatile Content. - the volative content of the micro-

spheres shall be run on triplicate samples of 1 gram +_0.1 grams;

the samples shall be weighed to 0. 0001 grams; the tare of a crucible

shall be weighed. The sample shall be weighed (W1), then dried in a

mechanical convection oven at 300°F for 30 +2 minutes, and reweighed

(W2). The volatile matter shall be calculated as follows:

(W 1 - W 2)
Percent volatile matter = x 100

W 1

4.2.2 Viscosity Number - Test as described in HMS 16-1096.

4. Z. 3 Ash Content - Test as in 4.2.1 except that the dry

sample from the volatile content test shall be subjected to 1300°F until

it reaches constant weight within+0. 0001 grams. Ash content shall be

calculated on the basis of dry weight of resin.

4.2.4 Particle Size - All material shall pass the designated

sieve size when tested using standard U.S. sieve and Rot-A-Top

machine or equivalent. A 25 gram sample shall be used.

4.2.5 Water Extractables - A 25 gram sample of resin shall

be washed and filtered six times in approximately 1 quart of distilled

water. The individual washings shall be for 2 hours with water at

80-110°Fin a Waring Blender set for high speed mixing. The washed

material after the six washings shall be dried to constant weight in a

vacuum oven at 120°F.
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4. Z. 6 Cure Time - A 0.05 gram sample of resin shall be

placed with a spatula on a hot plate controlled to a temperature of
o

302 _2°F. A stop watch shall be used to determine the cure time.

Cure shall be completed when the material no longer strings with the

spatula.

5, 0 APPROVED MATERIALS

Type II - Hughes HFN phenolic novolac resin.
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HUGHES MATERIAL SPECIFICATION

(PRELIMINARY)

NYLON- POWDERED

1.0 SCOPE

1.1 Scope - This specification covers the nylon used in compound-

ing the molding mix for syntactic foam ablative material.

2.0 APPLICABLE DOCUMENTS

2. 1 There are no applicable governmental documents.

3.0 REQUIREMENTS

3.1 Qualifications - The nylon shall be a type 66 that has passed

the qualification tests described in section 4.3.

3.2 Classes - There shall be two classes of material as follows:

Class A - Average Particle Size 80 mesh

Class B - All particles shall pass through 120

mesh screen.

3.3 Physical Properties

3.3. 1 Particle - The particle size distribution shall meet

the following requirements when subjected to the sieve analysis in

accordance with 4.3. I. The two classes of material shall be defined

as specified in 3.2.

3.3._ Ash Content - The ash content shall not exceed 0.6 per-

cent when tested in accordance with 4. _. 2.

3.3.3 Melting Point - The melting point shall lie between

250°C and 260°C when tested in accordance with 4.2.3.

4.0 QUALITY ASSURANCE PROVISIONS

4. 1 Sampling - The following sampling procedure shall be

applicable.
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4. 1. 1 Sampling Plan - Each drum shall be sampled from

three distinct locations as follows: Top, Bottom, and Center. A 150

gram sample shall be removed from each location.

4.2 Qualification Tests - The qualification tests shall be as follows:

4.2. 1 Particle Size - The test for particle size distribution

shall be made using standard U.S. Sieves and a Rot-A-Tap mechanical

shaker or its equivalent. The sieves shall be used with a cover and a

bottom pan; with a No. 50 at the top a No. 120, a No. 17 and the 230 at

the bottom. 25 grams _+0. 1 grams of the nylon shall be poured onto the

No. 50 sieve screen, the cover put into place and the assembly allowed

to shake for 15 _+1/2 minutes. Following the shaking the material

retained on each sieve shall be separately removed and weighed to the

nearest 0.01 gram; the percentage of material retained in each sieve

screen shall be computed as follows:

Percent retained = Grams of material retained divided by
total recovered material.

The percentage passed by each screen shall be the total percentage

retained on all the sieves below it in the sieve assembly; for example

the percentage passed by the U.S. No. 50 screen would be calculated

as follows :

Percent passed by U.S. No.

U.S. No.

U.S. No.

U.S. No.

50 screen = Percent retained on

120, plus, percent retained on

170, plus, percent retained on

230.

The 40 to 60 percentile marks of the distribution should all be contained

on the 120 mesh screen.
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4.2.2 Ash Content - The ash content of the nylon will be run

on triplicate samples of 30 grams +0.5 grams. The samples shall be

weighed to 0. 001 grams; the tare of the crucible shall be weighed. The

sample shall be placed in an oven controlled at a temperature of 1300°F

_+10°F, for a period of one hour. The ash content shall be calculated

as follows :

Percent Ash =
W ° - Wf

W
O

x 100

where W ° = Original weight of sample

Wf = Final weight of sample

4.2.3 Melting Point - The melting point of the nylon shall be

run in triplicate. The Fisher-Johns melting point apparatus shall be

employed. A sample of 0.05 grams shall be placed between two glass

covers and placed on the stage of the apparatus. Heat shall be applied

to the stage at a rate of 10°C per minute. The melting point observed

shall be recorded to the nearest degree.
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